Альтернативная теория гравитации бросает вызов темной материи. Что нужно знать?
Астрофизик из Университета Алабамы разработал новую теорию гравитации, согласно которой она может существовать без массы, а значит темная материя больше не нужна 💫
Что такое "антивселенная" и могут ли ученые ее обнаружить?
Если электроны могут существовать в параллельных состояниях, то почему то же самое не может происходить и с нашей Вселенной?
История одной премии – хаос, климатические модели и сложные системы
Каждый год СМИ сообщают о вручении той или иной Нобелевской премии в одной из пяти научных областей. Эти новости (знаю по себе) обычно остаются незамеченными среди бесчисленных инфоповодов со всех уголков земного шара. «Ну вручили и вручили, – думаем мы, пролистывая ленту перед сном или за чашечкой утреннего кофе – что там еще интересного-то»? Между тем, такое отношение к выдающимся интеллектуальным достижениям вряд ли можно счесть удовлетворительным. Да, мы привыкли к быстрому контенту – два поста здесь, три репоста там, обязательно поставить лайк подруге и еще не забыть посмотреть серию любимого сериала. Но.
Но! Готова поспорить, на самом деле вряд ли можно найти тему интереснее, чем Нобелевская премия. Судите сами – химик и инженер, отец которого трудился над разработкой торпед, приобрел металлургический концерн, который впоследствии превратил в крупнейшего производителя вооружения в стране. Но больше всего прибыли ему принесло изобретение динамита. Да-да, Альфред Нобель и завещание свое придумал не просто так.
Дело в том, что в 1888 году его «похоронили заживо». Когда его брат Людвиг погиб в Каннах, журналисты по ошибке разместили в газетах объявление о смерти не Людвига, а Альфреда Нобеля. Прочитав некролог, он с ужасом обнаружил, что его назвали «торговцем смертью». Именно тогда наш герой задумался над тем, каким его запомнит человечество.
История одной премии
Сегодня имя Альфреда Нобеля ассоциируется у большинства из нас с выдающимися научными достижениями. Но кто знает, стало бы это возможным не ошибись один неизвестный истории репортер. Ведь именно после того, как миллиардер прочел собственный некролог, он решил изменить завещание. Согласно новому завещанию, составленному Нобелем в 1895 году, большая часть его состояния отходила в фонд для присуждения пяти ежегодных премий «тем, кто в течение предыдущего года принес наибольшую пользу человечеству».
Завещание Альфреда Нобеля
Все мое движимое и недвижимое имущество должно быть обращено моими душеприказчиками в ликвидные ценности, а собранный таким образом капитал помещен в надежный банк. Доходы от вложений должны принадлежать фонду, который будет ежегодно распределять их в виде премий тем, кто в течение предыдущего года принес наибольшую пользу человечеству. Указанные проценты необходимо разделить на пять равных частей, которые предназначаются: одна часть — тому, кто сделает наиболее важное открытие или изобретение в области физики; другая — тому, кто сделает наиболее важное открытие или усовершенствование в области химии; третья — тому, кто сделает наиболее важное открытие в области физиологии или медицины; четвертая — тому, кто создаст наиболее выдающееся литературное произведение идеалистического направления; пятая — тому, кто внес наиболее существенный вклад в сплочение наций, уничтожение рабства или снижение численности существующих армий и содействие проведению мирных конгрессов. Мое особое желание заключается в том, чтобы при присуждении премий не принималась во внимание национальность кандидатов.
Этими премиями, учрежденными по его завещанию, являются Нобелевская премия по физике, Нобелевская премия по химии, Нобелевская премия по физиологии или медицине, Нобелевская премия по литературе и Нобелевская премия за мир. Первое распрееление премий состоялось 10 декабря 1901 года, в пятую годовщину смерти Нобеля.
Это интересно: Корпускулярно-волновой дуализм подтвердили экспериментально. Что это значит?
Как видите, Альфред Нобель, несмотря на создание динамита и владение крупнейшим заводом вооружений, был глубоко озабочен не только тем, каким его запомнят будущие поколения. Его решение о создании подобной премии в конечном итоге позволило объединить ученых из разных уголков мира и тем самым продвинуть науку (а вместе с ней и нашу цивилизацию) вперед, причем семимильными шагами. А вот многочисленные родственники Нобеля сочли себя обделенными и требовали признать завещание недействительным.
Эта история, однако, напоминает мне историю советского физика-теоретика Андрея Сахарова, лауреата Нобелевской премии мира 1975 года. Руководство СССР говорило о нем следующее: «этот человек вооружил нашу страну самым мощным в истории оружием, что сделало Советский Союз одной из двух супердержав». Участвуя в разработке первой водородной бомбы СССР, Сахаров, впоследствии, обрел статус диссидента и выступал за мир и ядерное разоружение.
- Интересный факт
- В 1963 году писатель-фантаст Курт Воннегут в своем романе "Колыбель для кошки" поставил вопрос об отвественности ученых за свои изобретения. Сюжет произведения строится вокруг гениального изобретения доктора Феликса Хониккера – вещества под названием "Лед-9", которое представляет собой кристаллическую модификацию воды с температурой плавления 45,8°C. Один крошечный кристалл "Льда-9", попав в любой водоем, неизбежно приведет к гибели всего живого на Земле.
Таким образом, сама история создания Нобелевской премии является не просто «забавной (интересной и проч) историей», а поводом задуматься о таких серьезных вещах, как глобальное будущее человечества и ответственность за собственные действия и поступки.
Нобелевская премия по физике 2021
Интересно, что именно ответственность за изобретения и их использование стала одной из тем Нобелевской премии по физике 2021 года. Да, наконец-то можно говорить тем, кто отрицает глобальное потепление, что за создание климатических моделей, позволяющих предсказать будущие явления, вручили Нобелевскую премию. Так что щах и мат, отрицатели, но что-то я увлеклась.
Итак, в этом году Нобелевская премия по физике присуждена одной половиной Сюкуро Манабе и Клаусу Хассельманну, а другой половиной Джорджо Паризи. Эти исследователи заложили основу наших знаний о климате Земли и о том, как человечество влияет на него, а также произвели революцию в теории неупорядоченных материалов и случайных процессов. Согласна, вторая часть звучит несколько сложнее первой. Но эта сложность должна лишь раззадоривать наше любопытство, а не наоборот, так что начнем.
Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на нашу группу ВКонтакте и присоединяйтесь к комментариям!
Климатические модели
Общая картина изменения климата достаточно проста: удерживающие тепло газы в атмосфере превращают Землю в метафорическую теплицу, заставляя планету нагреваться. Но то, как именно произойдет это потепление — через океаны планеты, ледяные щиты, горы, леса и города, подпитываемые всем, от утечек метана до двуокиси углерода — чрезвычайно запутанно.
Мы погружены в сложность в каждом масштабе, который наблюдаем, и как ученые, спрашиваем: сколько деталей требуется для объяснения наблюдений? Должны ли мы отслеживать каждую молекулу воды, чтобы объяснить существование океана? – заявил физик из Йельского университета Джон Веттлауфер на пресс-конференции, объявляющей о присуждении премии.
На самом деле сложные физические системы, такие как климат, часто определяются их беспорядком. Лауреаты этого года помогли миру разобраться в том, что казалось хаосом, описав эти системы и предсказав их долгосрочное поведение. Как пишет The New York Times, в 1967 году доктор Манабе разработал компьютерную модель, которая подтвердила критическую связь между основным парниковым газом — двуокисью углерода — и потеплением атмосферы.
Еще больше интересных статей читайте на нашем канале в LiveJournal
Именно эта модель проложила путь для других, все более сложных. Более поздние модели доктора Манабе, в которых исследовались связи между условиями в океане и атмосферой, имели решающее значение для понимания того, как усиленное таяние ледяного покрова Гренландии может повлиять на циркуляцию океана в Северной Атлантике.
Примерно через десять лет после основополагающей работы доктора Манабе, его коллега физик Клаусс Хассельманн создал модель, которая связала краткосрочные климатические явления – другими словами, дождь и другие виды погоды — с долгосрочным климатом, таким как океанские и атмосферные течения.
Впоследствии его работа заложила основу для научных исследований, направленных на установление влияния изменения климата на конкретные события, такие как засухи, волны жары и сильные ливни.
Словом, недооценить работу Нобелевских лауреатов сложно. Это особенно хорошо знают наши постоянные читатели, так как мы часто пишем о климатических изменениях и моделях, с помощью которых эти изменения можно отследить. Кстати, результаты нового исследования, опубликованного в научном журнале Global Change Biology, показали, что если усилия по борьбе с глобальным потеплением останутся на нынешнем уровне, к 2500 году человечество может исчезнуть с лица Земли.
Скрытые закономерности
Другая половина Нобелевской примени присуждена за открытие в начале 1980-х годов «скрытых закономерностей в неупорядоченных сложных материалах», что сокрыты за кажущимися случайными движениями и завихрениями в газах или жидкостях. Его работа являются важным вкладом в теорию сложных систем, а также примечательно тем, что ее аспекты можно применить к нейробиологии, машинному обучению и формированию полета скворцов.
«Джорджио Паризи награжден за его революционный вклад в теорию неупорядоченных материалов и случайных процессов», – говорится в заявлении Королевской Шведской академии наук.
Система, которая была им рассмотрена около 1980 года, называется спиновым стеклом, хотя разработанные методы и сформулированные принципы оказались применимыми к значительно более широкому спектру объектов.
Доктор Паризи – итальянский физик-теоретик, родившийся в 1948 году в Риме, чьи исследования были сосредоточены на квантовой теории поля и сложных системах. Он получил степень доктора философии в Римском университете Сапиенца в 1970 году. Является профессором Римского университета Сапиенца.
Читайте также: «Новая физика»: тайна мюонного эксперимента
Итак, какие системы ученые называют сложными? Те, что состоят из множества частей, взаимодействующих друг с как самостоятельные элементы. Их одновременное взаимодействие, будучи разнонаправленным, придает сложной системе ее отличительную черту, а именно появление новых свойств, которые отсутствуют на уровне отдельных элементов и не сводятся к характеристикам элементов, составляющих систему.
Уже исходя из одного определения, можно понять, насколько сложная эта тема. И описать ее с помощью математики невероятно трудно, ведь необходимо учесть все возможные варианты взаимодействия элементов друг с другом. А элементы, как известно, часто ведут непредсказуемо, так что в любой системе огромную роль играет Его Величество Случай.
Есть еще одна характеристика сложных систем: при взаимодействии со сложной системой одни и те же действия могут давать разный результат. В зависимости от состояния, в котором система находилась изначально. Все вышеописанное означает, что чтобы предсказать, как сложная система поведет себя в будущем, необходимо учесть огромное количество факторов, причем зачастую неизвестных.
Но около 40 лет назад Джорджо Паризи доказал, что совершенно случайные на первый взгляд факторы связаны между собой и даже подчиняются определенным правилам. Если попробовать объяснить совсем простыми словами, то работа итальянского физика позволяет свести воедино все неизвестные переменные. Их объединение, например, в «общий фактор неопределенности» значительно повышает точность не только расчетов, но и предсказаний.
- Не пропустите: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?
Что вновь возвращает нас к предыдущим лауреатам и их работе по климатическому моделированию: работа Паризи позволяет климатологам строить значительно более точные модели происходящих климатических изменений, как в результате антропогенной деятельности, так и множество других факторов.
В заключении же хочу сказать, что работа итальянского физика демонстрирует нам, что «понять лес, созерцая дерево – не сложно. На самом деле это невозможно». Порядок, отмечает Паризи, существует только на соответствующем масштабе и хаос «на нижнем уровне» ему не помеха. Безусловно, можно искать закономерности и в климате и погоде – но лишь на уровне статистики и учтя при этом множества прочих факторов – сложные системы требуют неординарных решений.
Материал подготовлен специально для Hi-News.ru
Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?
Парадокс путешествий во времени и варианты его решения. Что нужно знать?
Сегодня путешествия во времени являются излюбленной темой как голливудских сценаристов, так и научных фантастов. Но так было не всегда.
«Новая физика»: тайна мюонного эксперимента
Недавно мировые СМИ сообщили о ряде удивительных открытий, согласно которым Стандартная модель физики частиц может оказаться неполной. Все дело в магнетизме субатомных частиц, называемых мюонами: пятнадцать лет назад физики из Брукхейвенской национальной лаборатории обнаружили, что мюоны двигаются неожиданными образом, что не соответствовало теоретическим предсказаниям. С тех пор ученые пытались понять почему.
Мюон и Стандартная модель
Исследователи регистрируют мюоны в космических лучах – они возникают в результате распада заряженных пионов (три вида субатомных частиц из группы мезонов). Пионы создаются в верхних слоях атмосферы и имеют очень короткое время распада – несколько наносекунд. Мюоны являются неотъемлемым элементом космоса, а физики отмечают, что они похожи на крошечные вращающиеся вокруг собственной оси магниты.
Мюоны идентичны электронам (за исключением массы) и имеют скорости, близкие к скорости света. Эти субатомные частицы генерируют магнитные поля, силу и ориентацию которых физики называют магнитным моментом.
Для расчета магнитного момента мюона вплоть до 2020 года ученые использовали смешанный подход. Они собирали данные о столкновениях между электронами и позитронами (противоположностью электронов) а затем использовали их для вычисления вклада сильного взаимодействия в магнитный момент мюона. Последние результаты были получены в прошлом году и дают очень точную оценку.
6 апреля в научном журнале Nature вышло исследование, в котором физики применили новый подход. С его помощью им удалось получить оценку напряженности магнитного поля мюона, которое практически полностью соответствует его экспериментальному значению.
По словам ведущего автора исследования, профессора физики в Пенсильванском университете Золтона Фодора, большинство явлений в природе можно объяснить с помощью Стандартной модели – она позволяет предсказать свойства частиц с удивительной точностью. Но когда экспериментальные результаты и теория не совпадают, существует вероятность открытия чего-то нового – чего-то, что лежит за пределами Стандартной модели.
Стандартная модель является самой успешной на сегодняшний день квантовой теорией, которая описывает слабые, электромагнитныее и сильные взаимодействия.
Частицы Стандартной модели объединяются друг с другом четырьмя фундаментальными силами. Три описанных выше взаимодействия доступны квантовой физике, но четвертое – гравитационное взаимодействие – не согласуется с квантовой теорией, поэтому его рассматривают отдельно.
В ходе нового исследования ученым удалось привести теорию в соответствии с измерениями. Для этого они построили оценку с нуля, начав с довольно простых уравнений.
Читайте также: Альтернативная история Большого взрыва
Полученные данные существенно сокращают разрыв между теорией и экспериментальными измерениями и, если являются верными, подтверждают главенство Стандартной модели, которая десятилетиями руководила физикой элементарных частиц. Но это – далеко не самые интересные новости.
Кто и почему говорит о «Новой физике»?
Несмотря на описанные выше результаты, существует все больше свидетельств того, что крошечная субатомная частица, похоже, не подчиняется известным законам физики. Так 7 апреля в журнале Physical Review Letters вышло исследование, результаты которого, по мнению его авторов, открывают дверь в неизвестность в нашем понимании Вселенной.
Как говорится в пресс-релизе исследования, ученые из Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США) в ходе эксперимента, который получил название Muon g-2 хотели получить точные измерения колебания магнитных мюонов при прохождении через магнитное поле.
«Если экспериментальное значение магнитного момента мюонов отличается от теоретического предсказания – мы называем это аномалией – это отклонение может быть признаком новой физики, в которой на мюон влияет тонкая и неизвестная частица или сила», – пишут авторы научной работы.
Необходимо отметить, что поиски подобной аномалии (и «Новой физики» в частности) ведутся не один год – ученые ищут ее, чтобы разгадать тайну темной материи, темной энергии и других явлений. Дело в том, что несмотря на успех Стандартной модели, она, увы, описывает Вселенную не до конца, так как не учитывает четвертое, гравитационное взаимодействие.
Новая сила природы
Так как признаки Новой физики можно обнаружить благодаря аномалиям, исследователи изучают их очень внимательно, особенно когда экспериментальные результаты расходятся с теоретическими предсказаниями.
Именно это и произошло в ходе работы физиков из Fermilab – результаты эксперимента показали, что полученное значение магнитного момента мюона, когда тот проходит через магнитное поле, отклоняется от теории на ничтожную величину – 0,00000000251 – и имеет статистическую значимость 4,2 сигма. Для полной уверенности физикам нужно достичь показателя в 5 сигма. Но даже такая крошечная величина может сильно изменить направление физики элементарных частиц.
Мюонное кольцо g-2 в Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США), работает при температуре минус 450 градусов по Фаренгейту и изучает колебания мюонов при прохождении через магнитное поле.
К сожалению, несмотря на столь вдохновляющие результаты, при такой статистической значимости сигма нельзя сказать, что ученые совершили открытие. Но доказательства существования новой физики в мюонах, как пишет Scientific American, в сочетании с аномалиями, недавно наблюдавшимися в эксперименте Большого адронного коллайдера Beauty (LHCb) в ЦЕРН близ Женевы – впечатляют и раззадоривают исследователей.
Ученые также сообщили, что вероятность того, что полученные измерения могут быть случайностью, равняются одному из 40 000. Этого, однако, недостаточно для объявления официального открытия, но ученые отмечают, что в ближайшие годы мюонные эксперименты продолжатся, а значит данных будет значительно больше.
Интересно, что сам эксперимент Fermilab закончился в середине 2018 года, но исследовательская команда по-прежнему занимается анализом полученных данных, включая дополнительные.
Если эти данные окажутся похожи на те, что опубликованы в новом исследовании, их может быть достаточно, чтобы сделать аномалию полномасштабным открытием к концу 2023 года – то есть подтвердить наличие новой, неизвестной науке силы природы (или частицы), которая оказывает влияние на мюоны. Так что ждем, 2023 не за горами.
Материал подготовлен специально для crithin.ru
Владимир Торков: Теория относительности 2.0. Связь точных наук
Владимир Торков с докладом «Теория относительности 2.0. Связь математики, геометрии и физики» на VII научно-практическом семинаре «Пирамиды и время».
Нижегородская область, Навашинский район, поселок Судострой, парк-отель «Перемиловы горы», 1–7 июля 2022 г.
Почему энергетика Украины не сможет держаться на одних только АЭС
Почему от радиации вы не превратитесь в мутанта. Разоблачаем народный миф
Что именно радиация делает с телом человека? Почему она так опасна? Объясняю простыми словами
ЭКСКЛЮЗИВ! Доклады, которые не выйдут на Ютубе: Д. Павлов, А.Жуков, С. Котковский
Три новых эксклюзивных видео!
Интеллектуальный Клуб от 2 июня
Дмитрий Павлов: Фокусировка поля времени
Дмитрий Павлов с докладом "Фокусировка поля времени" на VII научно-практическом семинаре "Пирамиды и время".
Нижегородская область, Навашинский район, поселок Судострой, парк-отель "Перемиловы горы", 1-7 июля 2022 г.
АРХИВ ЛАИ: Дмитрий Павлов на ТВ - Сюжет про пирамиды Египта и структуру Ришат
Фрагмент программы "Самые шокирующие гипотезы» при участии Дмитрия Павлова (т/к РЕН ТВ, сентябрь 2023 г.).
Сюжет про пирамиды Египта, финслерову геометрию и структуру Ришат.
В ноябре состоится экспедиция ЛАИ к структуре Ришат — "Глазу Сахары" — в Мавританию.
ВИДЕО ПО ТЕМЕ:
Экспедиция в Сахару - В поисках легендарной Атлантиды: https://clck.ru/35q6rk
Уникальная экспедиция к Глазу Сахары: https://clck.ru/35q6pT
Дмитрий Павлов: Про новые исследования и дольмены Кавказа (Полная версия видео)
Новое видео с Дмитрием Павловым!
Дмитрий Павлов: Лабораторные эксперименты в Абхазии
Видеосообщение от Дмитрия Павлова, записанное во время визита в Абхазию, в лабораторию, организованную доктором физ.-мат. наук Леонидом Ирбековичем Уруцкоевым и расположившуюся в "Сухумском физико-техническом институте".
"НИИ ГСГФ" и лаборатория Уруцкоева планируют проводить совместные эксперименты.
Подробнее в самом видео.
Дорогие подписчики! В этом сентябре вы можете провести свой отпуск вместе с нами!
• 16-26 сентября - "Загадки древнего Египта": https://aturs.ru/kruiz
• 2-14 ноября - "Храмы Египта - На встречу с Солнцем": https://aturs.ru/temples
ЭКСКЛЮЗИВ: Мир глазами финслеровой геометрии (Нигде ранее не публиковавшийся фильм А.Ю. Склярова )
Фильм Андрея Склярова из архива ЛАИ