3.1 | Структура промпта | Курс по Stable Diffusion
(⓿_⓿) Внимание! Примеры на видео созданы в ранних версиях Stable Diffusion. Современные чекпоинты сгенерируют результат с более высокой эстетической оценкой. Общая суть промптинга при этом остаётся неименной. С видами чекпоинтов познакомимся в одном из следующих уроков.
Создание промптов для Stable Diffusion является ключевым этапом в работе с нейросетями и моделями text2image. Эффективные промпты позволяют добиться высококачественных результатов и реализовать творческие замыслы. Промпт — это текстовый запрос, который формулируется таким образом, чтобы нейросеть могла его понять и воплотить в изображение. В промпте указывается тип (фотография, иллюстрация, скетч и т.п), субъект (то, что должно быть изображено), его действия или окружение, а также ключевые слова, определяющие стиль и детали. Важно помнить, что расположение слов в промпте влияет на итоговую генерацию: чем ближе слово к началу, тем больше его влияние. Для создания эффективных промптов можно использовать различные подходы: самостоятельное написание, использование конструкторов промптов или оптимизационных инструментов.
📃 Сайты с ключевыми модификаторами:
Посмотрите как модификаторы влияют на генерируемое изображение.
- https://www.the-ai-art.com/modifiers
- https://rentry.org/artists_sd-v1-4
- https://www.urania.ai/top-sd-artists
- https://sgreens.notion.site/sgreens/4ca6f4e229e24da6845b6d49e6b08ae7?v=fdf861d1c65d456e98904fe3f3670bd3
📃 Переводчики
Переводчики помогут перевести промпт на английский языке.
- Deepl — рекомендую не только для использования в браузере, но и бесплатную версию программы для переводов текста прямо в Windows ⭐
- Google translate
- Яндекс translate
🖐На практике микросюжетные промпты не используются, поскольку современные нейросети плохо понимают контекст. В лучшем случае нейросеть проигнорирует слова, а в худшем — добавит в изображение нежелательные искажения. Подробности вы найдете в следующем уроке.
Далее: 3.2 Влияние текстовой подсказки
0 комментариев