1.3 | На чьих картинках учился Stable Diffusion? | Курс по Stable Diffusion Automatic
Датасет — это набор картинок, на которых обучается нейросеть. В видео я покажу как посмотреть на эти картинки и как среди них найти свои фотографии или рисунки.
📃 Ссылки
Тот самый пост с челленджем на генерацию Чебурашки.
Как корпорации и государства на нас наживаются
При обучении Stable Diffusion версии 1.5 использовался общедоступный датасет изображений. Однако большинство компаний, создающих нейросети, например, Midjourney, предпочитают не раскрывать источники данных, использованных для обучения их моделей. Государства тоже не стесняются использовать наши персональные данные для обучения надзирающего «Большого брата» 😈
Вы вряд ли сможете с уверенностью сказать, были ли ваши личные фотографии задействованы при обучении нейросети Midjourney. Тем не менее, многие социальные сети и интернет-платформы активно используют пользовательский контент, включая тексты, видео и изображения, для обучения своих нейронных сетей без ведома и согласия авторов.
Происходит ли это с вашим контентом в данный момент? Хотите ли вы, чтобы так было? К сожалению, пользователи зачастую не имеют выбора и возможности проконтролировать этот процесс 🕵️
Хотя использование персональных данных для обучения нейронок может вызывать беспокойство с точки зрения приватности, это одновременно является неотъемлемой частью развития технологий искусственного интеллекта. Нейросети обучаются на больших объемах разнообразных данных, и пользовательский контент является ценным источником такой информации.
Компаниям следует быть более прозрачными в отношении своих практик использования данных и предоставлять пользователям возможность сделать осознанный выбор о том, хотят ли они делиться своим контентом для этих целей.
Нейросети — наши суперсилы
Я обрисовал общую информацию о Stable Diffusion, теперь давайте взглянем на эту технологию в более широком контексте.
Согласно теории диффузии инноваций, процесс распространения новых идей и технологий проходит через пять этапов. Нейросети, несомненно, являются важной инновацией, которая затронет все сферы нашей жизни. В данный момент мы находимся на границе между ранними последователями и ранним большинством пользователей этой технологии.
Это одновременно наше преимущество и вызов. Чем раньше мы освоим нейросети, тем больше выгод сможем извлечь из их использования. Однако на ранних этапах порог входа выше, индустрия только формируется, а набор инструментов стремительно меняется. Вот в чем заключается сложность раннего вхождения в новую область.
Сейчас идет конкурентная борьба между разработчиками нейросетей, и мы, как пользователи, получаем многообразие продуктов. Пока на рынке не закрепились монополии, каждый разработчик стремится удовлетворить наши потребности и предоставить новые уникальные возможности.
Тот факт, что вы смотрите этот курс, говорит о том, что вы относитесь к числу тех, кто не хочет оставаться на месте и ищет новые горизонты. Я искренне рад, что вы работаете над собой и обогащаетесь знаниями.
Освоение нейросетей на этом раннем этапе требует усилий, но это также открывает перед нами огромные перспективы. Лет 20 назад в резюме было принято писать «Уверенный пользователь ПК». Сейчас это настолько базовая вещь что упоминать об этом в резюме так же нелепо как всерьез заявлять: «Обучен письму и арифметике».
«Уверенный пользователь нейросетей» — вот новый тренд на ближайшие годы! Вместе мы сможем стать частью этой революционной технологии и извлечь максимальную пользу из ее возможностей.
Далее: 2.1 Установка Stable Diffusion Automatic1111
0 комментариев