
Read more: Boosty | Sponsr | TG

Abstract – This document presents a analysis of the vulnerabilities

identified in Ivanti Secure Access VPN (Pulse Secure VPN) with

their potential impact on organizations that rely on this VPN. The

analysis delves into various aspects of these vulnerabilities, including

their exploitation methods, potential impacts, and the challenges

encountered during the exploitation process.

The document provides a qualitative summary of the analyzed

vulnerabilities, offering valuable insights for cybersecurity

professionals, IT administrators, and other stakeholders in various

industries. By understanding the technical nuances, exploitation

methods, and mitigation strategies, readers can enhance their

organizational security posture against similar threats.

This analysis is particularly beneficial for security professionals

seeking to understand the intricacies of VPN vulnerabilities and

their implications for enterprise security. It also serves as a resource

for IT administrators responsible for maintaining secure VPN

configurations and for industry stakeholders interested in the

broader implications of such vulnerabilities on digital security and

compliance.

I. INTRODUCTION

Northwave Cybersecurity has identified several
vulnerabilities in Ivanti Secure Access VPN (Pulse Secure
VPN). These vulnerabilities, specifically CVE-2023-38043,
CVE-2023-35080, and CVE-2023-38543, have been found to
affect the VPN software used by over 40,000 organizations
globally. The main vulnerability discussed allows for privilege
escalation due to a kernel driver installed by the VPN software
that creates a device readable and writable by any user. This can
potentially lead to kernel corruption or privilege escalation.

II. VULNERABILITIES

CVE-2023-38043, CVE-2023-35080, CVE- 2023-38543 are
identified in all versions of the Ivanti Secure Access Client
below 22.6R1.1.

This security flaw of CVE-2023-38043 could allow a locally
authenticated attacker to exploit a vulnerable configuration,
potentially leading to a Denial of Service (DoS) condition on the
user's machine. In some scenarios, this vulnerability could result
in a full compromise of the system.

CVE-2023-35080 is a vulnerability identified in the Ivanti
Secure Access Windows client, which could allow a locally
authenticated attacker to exploit a vulnerable configuration. This
could potentially lead to various security risks, including the
escalation of privileges, denial of service (DoS), or information
disclosure.

CVE-2023-38543 is a vulnerability that exists in all versions
of the Ivanti Secure Access Client (ISAC) below 22.6R1.1. This
security flaw could allow a locally authenticated attacker to
exploit a vulnerable configuration, potentially leading to a denial
of service (DoS) condition on the user's machine. In some
scenarios, this vulnerability could result in a full compromise of
the system.

The vulnerability arises when a specific component is
loaded, and a local attacker sends a specially crafted request to
this component. Successful exploitation of this vulnerability
could enable the attacker to gain elevated privileges on the
affected system. The severity of this vulnerability is rated as
high, with a CVSS 3.x base score of 7.8 by NIST and an 8.8
score by HackerOne, indicating a significant impact on
confidentiality, integrity, and availability.

Mitigation strategies for CVEs include updating the Ivanti
Secure Access Client to version 22.6R1.1 or later, as this version
addresses the vulnerability. Users are advised to apply the
update as soon as possible to protect their systems from potential
exploitation.

A. Attack flow

• Initial Access: The attacker must first obtain the ability
to execute low-privileged code on the target system.
This could be achieved through various means, such as
phishing, exploiting another vulnerability, or having
legitimate access to a user account on the system.

• Exploitation: Once the attacker has the ability to
execute code on the target system, they would exploit
the vulnerable configuration in the Ivanti Secure
Access Client. The specific details of the vulnerable
configuration and how it is exploited are not provided
in the search results, but it would involve sending a
specially crafted request to a component of the Ivanti
Secure Access Client.

• Denial of Service: The successful exploitation of the
vulnerability could lead to a DoS condition, where the
affected machine becomes unresponsive or crashes.

• System Compromise: In some scenarios, the
vulnerability could be leveraged to gain elevated
privileges or execute arbitrary code, leading to a full
compromise of the system.

B. Affected industries

CVEs affect various industries that utilize the Ivanti Secure
Access Client (ISAC), previously known as Pulse Secure
Desktop Client, for secure remote access to their networks.

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

• Healthcare: Hospitals and healthcare providers use
VPN clients for secure remote access to patient records
and internal systems, making them potential targets.

• Financial Services: Banks, insurance companies, and
other financial institutions rely on secure VPN access
for remote employees and to protect sensitive financial
data.

• Government and Public Sector: Government
agencies use VPN clients to ensure secure
communication and access to confidential government
resources remotely.

• Education: Universities and educational institutions
utilize VPN clients for secure access to academic
resources and to enable remote learning and
administration.

• Technology and IT Services: Companies in the
technology sector, including IT service providers, use
VPN clients for secure remote access to network
resources and client environments.

• Manufacturing and Critical Infrastructure:
Manufacturing firms and critical infrastructure
providers use VPN clients to securely connect to
industrial control systems and operational technology
networks.

• Retail and Consumer Goods: Retailers use VPN
clients for secure remote access to inventory
management, point of sale systems, and other critical
business applications.

1) Healthcare
In the healthcare industry, the consequences of such a

vulnerability being exploited could include:

• Disruption of Healthcare Services: A denial-of-
service attack could disrupt access to critical healthcare
systems and patient data, impacting patient care and
potentially leading to delays in treatment or diagnosis.

• Compromise of Sensitive Data: Elevated privileges
could allow attackers to access, modify, or delete
sensitive patient data, violating patient privacy and
potentially leading to identity theft or fraud.

• Regulatory and Compliance Violations: Healthcare
organizations are subject to strict regulatory
requirements for protecting patient data. A security
breach resulting from this vulnerability could lead to
regulatory fines and legal consequences.

• Damage to Reputation: A security incident could
damage the reputation of the affected healthcare
organization, leading to a loss of trust among patients
and partners.

• Financial Costs: Responding to and recovering from a
security breach can be costly, including the expenses
related to investigation, remediation, legal fees, and
potential settlements or fines.

2) Financial Services industry
In the Financial Services industry, the exploitation of CVEs

could have the following consequences:

• Disruption of Financial Operations: A denial-of-
service attack could disrupt access to critical financial
systems, affecting transactions, trading, and other time-
sensitive operations, potentially leading to financial
losses.

• Theft of Sensitive Financial Data: Elevated privileges
could enable attackers to access, modify, or exfiltrate
sensitive financial data, including client accounts,
transaction histories, and proprietary trading
algorithms, leading to financial fraud and competitive
disadvantage.

• Regulatory and Compliance Breaches: Financial
institutions are subject to stringent regulatory
requirements for data protection and cybersecurity. A
security breach resulting from this vulnerability could
result in regulatory fines, sanctions, and increased
scrutiny.

• Reputational Damage: Security incidents can
severely damage the reputation of financial institutions,
eroding client trust and potentially leading to a loss of
business as clients move their assets to perceived safer
institutions.

• Financial Costs: The costs associated with responding
to and recovering from a security breach can be
substantial, including forensic investigations, system
remediations, legal fees, and potential compensation
for affected clients.

3) Government and Public Sector
Impact on Government and Public Sector are:

• Disruption of Essential Services: Government
agencies provide essential services to the public,
including emergency services, social services, and
infrastructure management. A DoS attack exploiting this
vulnerability could disrupt these critical services,
affecting public safety and welfare.

• Exposure of Sensitive Information: Government
agencies handle highly sensitive information, including
personal data of citizens, classified national security
information, and critical infrastructure data. A full
system compromise could lead to the exposure of such
information, with severe implications for national
security and individual privacy.

• Loss of Public Trust: Any breach or disruption in
government services due to a cybersecurity incident can
lead to a significant loss of public trust in government
institutions. Restoring this trust can be a long and
challenging process.

• Regulatory and Legal Consequences: Government
agencies are subject to strict regulatory and legal
frameworks regarding data protection and
cybersecurity. A breach resulting from this vulnerability
could lead to legal challenges, inquiries, and the
imposition of penalties.

• Financial Implications: Responding to and recovering
from a cybersecurity incident can be costly. This
includes the costs associated with forensic

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

investigations, system remediations, potential legal
liabilities, and measures to prevent future incidents.

4) Education industry
Here are some potential impacts and consequences of CVEs

in the Education industry:

• Disruption of Educational Services: A denial-of-
service attack could disrupt access to learning
management systems, virtual classrooms, and other
online educational resources, affecting both teaching
and learning activities.

• Exposure of Sensitive Data: If the vulnerability leads
to a system compromise, sensitive data such as student
records, research data, and personal information of
faculty and students could be accessed or leaked.

• Regulatory and Compliance Issues: Educational
institutions are often subject to regulations regarding
the protection of student data. A security breach could
result in non-compliance with these regulations,
leading to legal and financial repercussions.

• Reputational Damage: A security incident could
damage the institution's reputation, potentially
affecting student enrollment and partnerships with
other organizations.

• Financial Costs: The costs associated with responding
to a security breach, including investigations, system
remediation, and potential legal liabilities, can be
significant for educational institutions.

5) Technology and IT Services industry
Potential Impacts and Consequences are:

• Disruption of IT and Technology Services: A Denial
of Service (DoS) attack exploiting this vulnerability
could disrupt access to critical IT infrastructure and
services, affecting both the service providers and their
clients. This could lead to downtime, loss of
productivity, and breach of service level agreements
(SLAs).

• Compromise of Sensitive Data: The vulnerability
could potentially lead to a full system compromise,
allowing unauthorized access to sensitive data such as
intellectual property, source code, customer data, and
internal communications. This could have severe
implications for confidentiality and data integrity.

• Regulatory and Compliance Risks: Many technology
and IT services firms are subject to regulatory
requirements concerning data protection and
cybersecurity. A security breach resulting from CVE-
2023-38043 could lead to non-compliance, resulting in
fines, legal actions, and increased regulatory scrutiny.

• Reputational Damage: The reputation of technology
and IT services companies is heavily dependent on their
ability to protect their own and their clients' data. A
security incident could erode trust, potentially leading to
loss of clients and difficulty in acquiring new business.

• Financial Costs: The financial implications of
responding to and recovering from a security breach can
be substantial. Costs may include forensic

investigations, system remediations, legal fees, and
compensations for affected parties.

6) Manufacturing and Critical Infrastructure industry
In the Manufacturing and Critical Infrastructure industry, the

exploitation of CVEs could have the following consequences:

• Disruption of Operations: A DoS attack could disrupt
access to critical systems and networks, affecting
production lines, supply chain management, and
operational technology (OT) environments.

• Compromise of Sensitive Data: Elevated privileges
could enable attackers to access, modify, or exfiltrate
sensitive data, including proprietary manufacturing
processes, infrastructure control systems data, and
employee information.

• Safety Risks: In critical infrastructure sectors, such as
energy, water, and transportation, a system compromise
could pose direct safety risks to the public and the
environment.

• Regulatory and Compliance Violations: Many
manufacturing and critical infrastructure organizations
are subject to regulatory requirements for cybersecurity.
A security breach could lead to non-compliance,
resulting in fines and legal actions.

• Reputational Damage: A security incident in these
industries can lead to a loss of confidence from
customers, partners, and regulators, potentially affecting
future business opportunities.

• Financial Costs: The financial impact of a security
breach can be considerable, including the costs of
incident response, system restoration, and potential legal
liabilities.

7) Retail and Consumer Goods industry
Here are some potential impacts and consequences of CVEs

in the Retail and Consumer Goods industry:

• Disruption of Retail Operations: A denial-of-service
attack could disrupt access to critical retail systems,
affecting sales, inventory management, and customer
service. This could lead to lost revenue and dissatisfied
customers.

• Compromise of Sensitive Data: If the vulnerability
leads to a system compromise, sensitive data such as
customer payment information, proprietary business
data, and employee information could be accessed or
leaked.

• Regulatory and Compliance Issues: Retailers are
often subject to regulations regarding the protection of
consumer data. A security breach could result in non-
compliance with these regulations, leading to legal and
financial repercussions.

• Reputational Damage: A security incident could
damage the retailer's reputation, potentially affecting
customer loyalty and brand value.

• Financial Costs: The costs associated with responding
to a security breach, including investigations, system

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

remediation, and potential legal liabilities, can be
significant for retail organizations.

III. EXTRA DETAILS

The IOCTL number 0x80002018 is associated with a
vulnerable function within the IRP_MJ_DEVICE_CONTROL
callback of a kernel driver. This function is designed to handle
specific I/O control codes (IOCTLs) that are sent from user-
mode applications to the driver. The code handling this IOCTL
contains a privilege escalation vulnerability due to the following
sequence of operations:

• A pointer to input data passed from user-mode
(systembuffer) is loaded.

• The first value inside that input is taken as a pointer to a
driver-specific structure.

• A pointer at offset +28h inside that structure is loaded.

• A pointer to offset +50h inside the memory that the
previous pointer is pointing to is passed to the kernel
API IoCsqRemoveIrp.

• Additionally, the second argument provided to the
IoCsqRemoveIrp call, which is located in the RDX
register, is also under the control of the user.

The IoCsqRemoveIrp function is a kernel API that removes
an IRP (I/O Request Packet) from a queue using function
pointers (callbacks) contained within the first argument passed
to the API. The vulnerability arises because the user has control
over this first argument, which means they can manipulate the
function pointers used by IoCsqRemoveIrp to execute arbitrary
code with kernel privileges.

The IoCsqRemoveIrp function itself is relatively
straightforward and uses the queue's dispatch routines to remove
the specified IRP from the queue. However, the critical security
issue here is that the user can control both the RCX and RDX
registers, which are used as arguments to the function. Inside the
function, there are multiple places where a pointer gets loaded
from the first argument (RCX) and is then passed to
_guard_dispatch_icall. This internal function is designed to call
whatever function pointer is in the RAX register, but it has a
significant limitation: the pointer in RAX must be at the start of
a valid function that is part of the kernel image. This means that
shellcode or non-kernel-image functions cannot be called
directly.

In summary, the vulnerability in the IOCTL handling code
allows an attacker to control the function pointers used by
IoCsqRemoveIrp, potentially leading to arbitrary code execution
with kernel privileges. This is a serious security flaw that can be
exploited for privilege escalation, allowing an attacker with local
access to the system to gain full control over it.

The constraints outlined in the scenario with the vulnerable
IOCTL handling in a kernel driver illustrate the complexity and
challenges in developing a reliable exploit for a kernel
vulnerability. Let's break down these constraints and their
implications for exploit development:

A. Constraint 1: Guaranteed Bluescreen

The automatic deallocation of the user-provided pointer via
ExFreePoolWithTag at the end of the IOCTL handling routine
presents a significant challenge. This operation requires a valid
kernel pointer, which is difficult for a regular user to provide.
Even if an attacker manages to supply a valid pointer, its
deallocation could lead to kernel instability or corruption, likely
resulting in a system crash (bluescreen). This constraint
significantly complicates the development of a stable exploit, as
it requires the exploit to either avoid triggering this deallocation
or to ensure that the deallocation does not lead to adverse effects
on system stability.

B. Constraint 2: Heavily Limited Argument Control

The limited control over the arguments passed to the
functions called by IoCsqRemoveIrp through
_guard_dispatch_icall poses another challenge. The exploit has
control over the RCX register (pointing to a memory area with
function pointers) and, in one instance, the RDX register
(pointing to a controlled memory area). However, for the other
calls, RDX points to a stack area outside the attacker's control,
and the R8 register, which could potentially carry additional
data, is not utilized within the context of these function calls.
This limitation severely restricts the exploit's ability to
manipulate the execution flow of the called functions, making it
difficult to achieve arbitrary code execution without causing a
system crash.

C. Constraint 3: Guarded Calls

The use of _guard_dispatch_icall as a defensive measure by
Microsoft further complicates exploit development. This
mechanism ensures that only pointers to legitimate functions
within the ntoskrnl.exe image can be called, effectively
preventing the execution of arbitrary shellcode or functions
outside the kernel image. Finding a sequence of three functions
within the kernel that can be called with the limited argument
control available, without causing a crash, is a significant
challenge. This constraint requires an in-depth understanding of
the kernel's internals and available functions to identify a viable
chain that could lead to successful exploitation.

D. Bluescreen bypass

To address the challenge of bypassing the guaranteed
bluescreen after exploiting the vulnerability, the approach
involves leveraging the last function call before the system
crashes. The idea is to prevent execution from continuing after
this last function call, without causing a system crash. The
proposed solution involves using synchronization and locking
functions, specifically targeting a kernel sync function that can
lock the entire thread indefinitely, thus preventing it from
reaching the ExFreePoolWithTag call that leads to a bluescreen.

The chosen function is KxWaitForSpinLockAndAcquire for
this purpose. This function takes a pointer in the RCX register
and checks if the value at the start of the memory it points to is
non-zero. If it is, the function enters a loop, checking the value
repeatedly until it becomes zero. However, by setting the first 8
bytes of the memory pointed to by RCX to a non-zero value, the
thread can be locked in an infinite loop, effectively preventing
the bluescreen without crashing the system.

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

However, locking a kernel thread in an infinite loop can
significantly impact system performance, causing the computer
to slow down after executing the exploit multiple times. To
mitigate this, the exploit can adjust the thread's priority to the
lowest possible setting using the SetThreadPriority() API with
the THREAD_PRIORITY_LOWEST parameter. This ensures
that the locked thread receives the least amount of CPU time,
minimizing its impact on system performance.

In summary, the strategy to bypass the bluescreen involves:

• Using the KxWaitForSpinLockAndAcquire function to
lock the thread in an infinite loop, preventing it from
reaching the ExFreePoolWithTag call.

• Setting the locked thread's priority to the lowest possible
to minimize its impact on system performance.

E. Reaching the vulnerable code

To reach the vulnerable code and properly set up the
IOCTL's input buffer to target the IoCsqRemoveIrp call, the
following steps are taken in the provided code snippet:

• A HANDLE to the device is obtained by calling
CreateFile with the DEVICE_NAME.

• An input buffer is allocated and initialized to zero using
calloc.

• The first 8 bytes of the input buffer are set to point to an
initial_buffer.

• The initial_buffer is then set up with pointers at offsets
0x28 and 0x30 to point to buff_28h and buff_30h,
respectively.

• The DeviceIoControl function is called with the
VULN_IOCTL code and the prepared input buffer.

The code snippet is designed to satisfy the checks performed
by the driver on the input buffer before calling IoCsqRemoveIrp.
Specifically, it ensures that:

• The first value in the input buffer is a non-NULL pointer
to another buffer (initial_buffer).

• The initial_buffer contains non-NULL pointers at
offsets +0x28 and +0x30.

• These pointers are used to pass a pointer to offset +0x50
in the buffer that buff_28h points to as the first argument
to IoCsqRemoveIrp.

• The pointer loaded from offset +0x28 (buff_28h) is
passed as the second argument to the function.

By setting up the input buffer in this way and calling
DeviceIoControl, the code reaches the vulnerable area of the
driver code where IoCsqRemoveIrp is called, as confirmed by
hitting the breakpoint in a debugger.

The IoCsqRemoveIrp function is a kernel API that removes
an IRP (I/O Request Packet) from a queue using function
pointers (callbacks) contained within the first argument passed
to the API. The vulnerability in the IOCTL handling code allows
an attacker to control the function pointers used by
IoCsqRemoveIrp, potentially leading to arbitrary code execution
with kernel privileges.

F. Controlling IoCsqRemoveIrp

To control the IoCsqRemoveIrp function and prepare the
input to satisfy all checks inside of it, the following steps are
taken:

• The input buffer is set up to reach the IoCsqRemoveIrp
call, ensuring that the first 8 bytes of the input buffer are
interpreted as a pointer to another buffer, and that this
pointer is not NULL.

• The buffer pointed to by the first 8 bytes of the input
buffer is then set up with pointers at offsets +0x28 and
+0x30 to point to buff_28h and buff_30h, respectively.

• The buff_28h buffer is prepared with function pointers
for the three function calls that IoCsqRemoveIrp will
make. These pointers are placed at the appropriate
offsets within buff_28h:

o The first function call pointer is placed at offset
+0x20.

o The second function call pointer is placed at offset
+0x10.

o The third function call pointer is placed at offset
+0x28.

• A separate buffer, iocsq_rsi_plus_8h, is allocated and a
non-zero value is placed at offset +0x68 to satisfy a
check within IoCsqRemoveIrp.

• The buff_30h buffer is set up to point to
iocsq_rsi_plus_8h at offset +0x08, and a non-zero value
is also placed at offset +0x68 within buff_30h.

• To prevent a bluescreen after exploiting the
vulnerability, the third function call is set to
KxWaitForSpinLockAndAcquire, which will lock the
thread indefinitely and prevent it from reaching the
ExFreePoolWithTag call that would cause a bluescreen.

• The first two function calls are set to HalMakeBeep, a
harmless kernel function that does not crash and takes
no arguments.

• The buff_28h buffer at offset +0x50 is set to a non-zero
value to provide a locked spinlock object to
KxWaitForSpinLockAndAcquire.

By setting up the input buffer in this way and calling
DeviceIoControl with the VULN_IOCTL code, the exploit is
able to reach the vulnerable area of the driver code where
IoCsqRemoveIrp is called and control the function pointers used
by IoCsqRemoveIrp, potentially leading to arbitrary code
execution with kernel privileges

G. Write What Where

The vulnerabilities discovered in Ivanti Secure Access VPN,
previously known as Pulse Secure VPN, by Northwave
Cybersecurity have significant implications for cybersecurity.
These vulnerabilities, specifically CVE-2023-38043, CVE-
2023-35080, and CVE-2023-38543, affect the VPN software
utilized by over 40,000 organizations globally. The primary
vulnerability allows for privilege escalation due to a kernel
driver installed by the VPN software, which creates a device

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

readable and writable by any user. This flaw can potentially lead
to kernel corruption or privilege escalation.

The exploitation process detailed by Northwave involves
stopping the VPN client to avoid memory corruptions, using the
command "%programfiles(x86)%\Common Files\Pulse
Secure\Integration\pulselauncher.exe" -stop. The timeline of the
disclosure process began with an initial notice to DIVD on
March 16, 2023, followed by a first reply from Ivanti regarding
their responsible disclosure policy on March 20, 2023.

Further complicating the situation, CISA has reported that
attackers have found workarounds to current mitigations for
vulnerabilities in Ivanti Connect Secure VPN devices, with over
2,100 devices compromised in the attacks. These vulnerabilities,
including CVE-2023-46805 and CVE-2024-21887, have been
given severity scores of 8.2 and 9.1 out of 10.0, respectively.
CISA recommends additional steps for customers to avoid being
compromised or to minimize damage.

H. Escalating privileges

To escalate privileges and gain full control over a system, an
attacker can exploit vulnerabilities that allow for privilege
escalation. One common method is to manipulate access tokens,
which are objects that describe the security context of a process
or thread, including the identity and privileges of the user
account associated with the process. By obtaining a token with
higher privileges, an attacker can create a new process with
elevated rights or replace the token of an existing process. A
write-what-where condition is a vulnerability that allows an
attacker to write an arbitrary value to an arbitrary location in
memory. This can be exploited to overwrite critical data
structures or function pointers, leading to arbitrary code
execution.

In the context of the Ivanti Secure Access VPN
vulnerabilities, CVE-2023-38043, CVE-2023-35080, and CVE-
2023-38543, the exploitation process involves stopping the VPN
client to avoid memory corruptions and then using the
vulnerabilities to escalate privileges. The vulnerabilities allow
for privilege escalation due to a kernel driver installed by the
VPN software that creates a device readable and writable by any
user, potentially leading to kernel corruption or privilege
escalation.

The exploitation process may involve finding the kernel
pointer for the token object using the
SystemExtendedHandleInformation class in the
NtQuerySystemInformation API and then using a write
primitive to overwrite the TOKEN-
>_SEP_TOKEN_PRIVILEGES->Enabled and TOKEN-
>_SEP_TOKEN_PRIVILEGES->Present fields to grant
system-level privileges to the process. This can be followed by
spawning a shell with elevated privileges.

I. Enabling The Vulnerable Driver

To enable the vulnerable driver in Ivanti Secure Access
VPN, which is typically disabled by default, an attacker can
replicate the behavior that automatically starts the driver when a
user connects to a VPN server with TDI fail-over enabled. This
can be done by setting up a rogue Ivanti Secure Access VPN
server and configuring it to use TDI fail-over.

• Download an Image: Obtain an Ivanti Secure Access
VPN server VM image from the official site.

• Install the Server: Install the downloaded VM image
on a Virtual Private Server (VPS) or locally. Ensure that
you can point a domain name to it, such as vpn.rogue-
server.com.

• Complete the VM Setup: Boot the VM image and
complete the setup as prompted. After finishing, you can
access the admin portal via the web.

• Configure a Valid Certificate: Obtain a valid
certificate for a rogue server domain (e.g., vpn.rogue-
server.com) using a service like Let's Encrypt. Upload
the fullchain.pem and privkey.pem to the admin portal
under System -> Configuration -> Certificates -> Device
certificate. Delete any pre-configured self-signed
certificate and configure your valid certificate to be used
by the internal and external ports.

• Restrict VPN & Configure TDI-Failover: In the
admin portal, navigate to Users -> User Roles -> Users.
Uncheck all Access Features except for Secure
Application Manager & Windows/Mac version sub-
item. Then, enable Enable fail-over to TDI for Pulse
SAM connection under the SAM -> Options tab.

• Create a VPN User: Go to Authentication -> Auth.
Servers -> System Local -> Users tab and create a new
user with a static username and password. This user will
be used to connect to the rogue VPN.

• Let Victim Connect to the Rogue Server: Have the
victim connect to the rogue server by providing the
URL, username/password of the user you created, and
the realm which that user is in (default is Users). Use the
following command to connect:

"%programfiles(x86)%\Common Files\Pulse
Secure\Integration\pulselauncher.exe" -url
YOUR_DOMAIN -u YOUR_USER -p YOUR_PASS -
r Users

For example:

"%programfiles(x86)%\Common Files\Pulse
Secure\Integration\pulselauncher.exe" -url vpn.rogue-
server.com -u steve -p Welcome01! -r Users

• Stop the VPN Client: Before running the privilege
escalation exploit, stop the VPN client to prevent
memory corruptions using the command:

"%programfiles(x86)%\Common Files\Pulse
Secure\Integration\pulselauncher.exe" -stop

By following these steps, an attacker can enable the
vulnerable driver and potentially exploit the vulnerabilities
CVE-2023-38043, CVE-2023-35080, and CVE-2023-38543 in
Ivanti Secure Access VPN to escalate privileges

IV. POC “MAIN.C”

The code relates to the Ivanti Pulse VPN Client Exploit for
CVE-2023-35080 is designed to exploit a vulnerability in the
Ivanti Secure Access Windows client, allowing for privilege
escalation, denial of service (DoS), or information disclosure.

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

Read more: Boosty | Sponsr | TG

A. How the Code Works

• Thread Priority Adjustment: The code starts by
attempting to set the current thread's priority to
background mode to minimize its impact on the system's
performance.

• Memory Allocation and Configuration: It allocates
memory for various buffers (input_buffer,
initial_buffer, buff_30h, iocsq_rsi_plus_8h) and
configures them to construct a malicious payload. This
includes setting up a pointer (buff_28h) to hold the byte
value intended to be written into a vulnerable
component within the driver's memory space.

• Kernel Base Address Retrieval: The code retrieves the
base address of the kernel (ntoskrnl_base) to calculate
the addresses of specific functions or offsets within the
kernel that the exploit intends to manipulate.

• Function Pointers Setting: It sets up function pointers
within the prepared buffers to point to malicious or
controlled code segments or to trigger the vulnerability
within the Ivanti Secure Access Client driver.

• Triggering the Vulnerability: The exploit triggers the
vulnerability by making a DeviceIoControl call with the
prepared input_buffer, which contains the malicious
payload designed to exploit the vulnerability.

• Privilege Escalation: If successful, the exploit modifies
the current process's token privileges or performs other
unauthorized actions, leading to privilege escalation,
DoS, or information disclosure.

B. Incoming Data:

• Target Device Path: The path to the vulnerable device
or driver that the exploit targets.

• Byte Value (what): The specific byte value that the
exploit intends to write into the target memory location.

• Target Memory Address (where): The memory
address within the vulnerable component or driver
where the exploit intends to write the byte value.

C. Outgoing Data/Result

• Exploit Status Messages: The code prints status
messages indicating the success or failure of various
steps, such as setting thread priority, creating threads,
and executing the exploit.

• Privileged Access: If the exploit is successful, it
achieves elevated privileges for the current process,
allowing it to perform actions that were previously
restricted.

• Potential System Modification: Depending on the
exploit's intent, it could modify system settings, disable
security measures, or perform other unauthorized
actions as a result of the privilege escalation.

V. POC “KERNEL.C”

The code targets a vulnerability in a system driver, likely
related to the Ivanti Pulse VPN Client Exploit for CVE-2023-

35080. The code is written in C and includes several functions
that interact with the Windows operating system at a low level
to manipulate device handles and memory.

A. How the Code Works

• BuildDevicePath: Constructs the device path string for
the vulnerable driver.

• OpenDevice: Opens a handle to the device using the
CreateFileW function, which allows for reading and writing
to the device.

• CloseDevice: Closes the handle to the device and frees
associated memory.

• GetFunctionOffset: Retrieves the offset of a function
within the ntoskrnl.exe file, which is the Windows NT
kernel.

• GetKernelBase: Determines the base address of the
kernel by querying system information.

• GetObjectPointedByHandle: Retrieves the kernel
object pointed to by a given handle, which could be used to
manipulate or read information from that object.

B. Incoming Data

• DevicePath: A string representing the path to the
vulnerable device or driver.

• DEVICE_NAME_W: The name of the device, which
is used to construct the device path.

• hDevice: A pointer to a handle that will be used to
interact with the device.

• fnName: The name of the function whose offset is
being retrieved.

• h: a handle whose pointed object is being retrieved.

C. Outgoing Data/Result

• DevicePath: The full device path string that is
constructed and used to open a handle to the device.

• hDevice: The handle obtained by opening the device,
which can be used for further interaction with the
device.

• FnOffset: The offset of the specified function within
the kernel's executable image.

• KernelBase: The base address of the kernel obtained
from the system information.

• Object: The kernel object pointed to by the specified
handle, which can be manipulated or read.

The code is designed to perform low-level operations that are
typically part of an exploit chain. These operations include
opening a handle to a vulnerable driver, determining the location
of certain functions or data within the kernel, and potentially
using this information to manipulate the system in a way that
exploits the vulnerability.

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

