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Abstract – This document presents a analysis of the vulnerabilities 

identified in Ivanti Secure Access VPN (Pulse Secure VPN) with 

their potential impact on organizations that rely on this VPN. The 

analysis delves into various aspects of these vulnerabilities, including 

their exploitation methods, potential impacts, and the challenges 

encountered during the exploitation process. 

The document provides a qualitative summary of the analyzed 

vulnerabilities, offering valuable insights for cybersecurity 

professionals, IT administrators, and other stakeholders in various 

industries. By understanding the technical nuances, exploitation 

methods, and mitigation strategies, readers can enhance their 

organizational security posture against similar threats. 

This analysis is particularly beneficial for security professionals 

seeking to understand the intricacies of VPN vulnerabilities and 

their implications for enterprise security. It also serves as a resource 

for IT administrators responsible for maintaining secure VPN 

configurations and for industry stakeholders interested in the 

broader implications of such vulnerabilities on digital security and 

compliance. 

I. INTRODUCTION 

Northwave Cybersecurity has identified several 
vulnerabilities in Ivanti Secure Access VPN (Pulse Secure 
VPN). These vulnerabilities, specifically CVE-2023-38043, 
CVE-2023-35080, and CVE-2023-38543, have been found to 
affect the VPN software used by over 40,000 organizations 
globally. The main vulnerability discussed allows for privilege 
escalation due to a kernel driver installed by the VPN software 
that creates a device readable and writable by any user. This can 
potentially lead to kernel corruption or privilege escalation. 

II. VULNERABILITIES 

CVE-2023-38043, CVE-2023-35080, CVE- 2023-38543 are 
identified in all versions of the Ivanti Secure Access Client 
below 22.6R1.1.  

This security flaw of CVE-2023-38043 could allow a locally 
authenticated attacker to exploit a vulnerable configuration, 
potentially leading to a Denial of Service (DoS) condition on the 
user's machine. In some scenarios, this vulnerability could result 
in a full compromise of the system. 

CVE-2023-35080 is a vulnerability identified in the Ivanti 
Secure Access Windows client, which could allow a locally 
authenticated attacker to exploit a vulnerable configuration. This 
could potentially lead to various security risks, including the 
escalation of privileges, denial of service (DoS), or information 
disclosure. 

CVE-2023-38543 is a vulnerability that exists in all versions 
of the Ivanti Secure Access Client (ISAC) below 22.6R1.1. This 
security flaw could allow a locally authenticated attacker to 
exploit a vulnerable configuration, potentially leading to a denial 
of service (DoS) condition on the user's machine. In some 
scenarios, this vulnerability could result in a full compromise of 
the system. 

The vulnerability arises when a specific component is 
loaded, and a local attacker sends a specially crafted request to 
this component. Successful exploitation of this vulnerability 
could enable the attacker to gain elevated privileges on the 
affected system. The severity of this vulnerability is rated as 
high, with a CVSS 3.x base score of 7.8 by NIST and an 8.8 
score by HackerOne, indicating a significant impact on 
confidentiality, integrity, and availability. 

Mitigation strategies for CVEs include updating the Ivanti 
Secure Access Client to version 22.6R1.1 or later, as this version 
addresses the vulnerability. Users are advised to apply the 
update as soon as possible to protect their systems from potential 
exploitation. 

A. Attack flow 

• Initial Access: The attacker must first obtain the ability 
to execute low-privileged code on the target system. 
This could be achieved through various means, such as 
phishing, exploiting another vulnerability, or having 
legitimate access to a user account on the system. 

• Exploitation: Once the attacker has the ability to 
execute code on the target system, they would exploit 
the vulnerable configuration in the Ivanti Secure 
Access Client. The specific details of the vulnerable 
configuration and how it is exploited are not provided 
in the search results, but it would involve sending a 
specially crafted request to a component of the Ivanti 
Secure Access Client. 

• Denial of Service: The successful exploitation of the 
vulnerability could lead to a DoS condition, where the 
affected machine becomes unresponsive or crashes. 

• System Compromise: In some scenarios, the 
vulnerability could be leveraged to gain elevated 
privileges or execute arbitrary code, leading to a full 
compromise of the system. 

B. Affected industries 

CVEs affect various industries that utilize the Ivanti Secure 
Access Client (ISAC), previously known as Pulse Secure 
Desktop Client, for secure remote access to their networks.  
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• Healthcare: Hospitals and healthcare providers use 
VPN clients for secure remote access to patient records 
and internal systems, making them potential targets. 

• Financial Services: Banks, insurance companies, and 
other financial institutions rely on secure VPN access 
for remote employees and to protect sensitive financial 
data. 

• Government and Public Sector: Government 
agencies use VPN clients to ensure secure 
communication and access to confidential government 
resources remotely. 

• Education: Universities and educational institutions 
utilize VPN clients for secure access to academic 
resources and to enable remote learning and 
administration. 

• Technology and IT Services: Companies in the 
technology sector, including IT service providers, use 
VPN clients for secure remote access to network 
resources and client environments. 

• Manufacturing and Critical Infrastructure: 
Manufacturing firms and critical infrastructure 
providers use VPN clients to securely connect to 
industrial control systems and operational technology 
networks. 

• Retail and Consumer Goods: Retailers use VPN 
clients for secure remote access to inventory 
management, point of sale systems, and other critical 
business applications. 

1) Healthcare 
In the healthcare industry, the consequences of such a 

vulnerability being exploited could include: 

• Disruption of Healthcare Services: A denial-of-
service attack could disrupt access to critical healthcare 
systems and patient data, impacting patient care and 
potentially leading to delays in treatment or diagnosis. 

• Compromise of Sensitive Data: Elevated privileges 
could allow attackers to access, modify, or delete 
sensitive patient data, violating patient privacy and 
potentially leading to identity theft or fraud. 

• Regulatory and Compliance Violations: Healthcare 
organizations are subject to strict regulatory 
requirements for protecting patient data. A security 
breach resulting from this vulnerability could lead to 
regulatory fines and legal consequences. 

• Damage to Reputation: A security incident could 
damage the reputation of the affected healthcare 
organization, leading to a loss of trust among patients 
and partners. 

• Financial Costs: Responding to and recovering from a 
security breach can be costly, including the expenses 
related to investigation, remediation, legal fees, and 
potential settlements or fines. 

2) Financial Services industry  
In the Financial Services industry, the exploitation of CVEs 

could have the following consequences: 

• Disruption of Financial Operations: A denial-of-
service attack could disrupt access to critical financial 
systems, affecting transactions, trading, and other time-
sensitive operations, potentially leading to financial 
losses. 

• Theft of Sensitive Financial Data: Elevated privileges 
could enable attackers to access, modify, or exfiltrate 
sensitive financial data, including client accounts, 
transaction histories, and proprietary trading 
algorithms, leading to financial fraud and competitive 
disadvantage. 

• Regulatory and Compliance Breaches: Financial 
institutions are subject to stringent regulatory 
requirements for data protection and cybersecurity. A 
security breach resulting from this vulnerability could 
result in regulatory fines, sanctions, and increased 
scrutiny. 

• Reputational Damage: Security incidents can 
severely damage the reputation of financial institutions, 
eroding client trust and potentially leading to a loss of 
business as clients move their assets to perceived safer 
institutions. 

• Financial Costs: The costs associated with responding 
to and recovering from a security breach can be 
substantial, including forensic investigations, system 
remediations, legal fees, and potential compensation 
for affected clients. 

3) Government and Public Sector 
Impact on Government and Public Sector are: 

• Disruption of Essential Services: Government 
agencies provide essential services to the public, 
including emergency services, social services, and 
infrastructure management. A DoS attack exploiting this 
vulnerability could disrupt these critical services, 
affecting public safety and welfare. 

• Exposure of Sensitive Information: Government 
agencies handle highly sensitive information, including 
personal data of citizens, classified national security 
information, and critical infrastructure data. A full 
system compromise could lead to the exposure of such 
information, with severe implications for national 
security and individual privacy. 

• Loss of Public Trust: Any breach or disruption in 
government services due to a cybersecurity incident can 
lead to a significant loss of public trust in government 
institutions. Restoring this trust can be a long and 
challenging process. 

• Regulatory and Legal Consequences: Government 
agencies are subject to strict regulatory and legal 
frameworks regarding data protection and 
cybersecurity. A breach resulting from this vulnerability 
could lead to legal challenges, inquiries, and the 
imposition of penalties. 

• Financial Implications: Responding to and recovering 
from a cybersecurity incident can be costly. This 
includes the costs associated with forensic 
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investigations, system remediations, potential legal 
liabilities, and measures to prevent future incidents. 

4) Education industry 
Here are some potential impacts and consequences of CVEs 

in the Education industry: 

• Disruption of Educational Services: A denial-of-
service attack could disrupt access to learning 
management systems, virtual classrooms, and other 
online educational resources, affecting both teaching 
and learning activities. 

• Exposure of Sensitive Data: If the vulnerability leads 
to a system compromise, sensitive data such as student 
records, research data, and personal information of 
faculty and students could be accessed or leaked. 

• Regulatory and Compliance Issues: Educational 
institutions are often subject to regulations regarding 
the protection of student data. A security breach could 
result in non-compliance with these regulations, 
leading to legal and financial repercussions. 

• Reputational Damage: A security incident could 
damage the institution's reputation, potentially 
affecting student enrollment and partnerships with 
other organizations. 

• Financial Costs: The costs associated with responding 
to a security breach, including investigations, system 
remediation, and potential legal liabilities, can be 
significant for educational institutions. 

5) Technology and IT Services industry 
Potential Impacts and Consequences are: 

• Disruption of IT and Technology Services: A Denial 
of Service (DoS) attack exploiting this vulnerability 
could disrupt access to critical IT infrastructure and 
services, affecting both the service providers and their 
clients. This could lead to downtime, loss of 
productivity, and breach of service level agreements 
(SLAs). 

• Compromise of Sensitive Data: The vulnerability 
could potentially lead to a full system compromise, 
allowing unauthorized access to sensitive data such as 
intellectual property, source code, customer data, and 
internal communications. This could have severe 
implications for confidentiality and data integrity. 

• Regulatory and Compliance Risks: Many technology 
and IT services firms are subject to regulatory 
requirements concerning data protection and 
cybersecurity. A security breach resulting from CVE-
2023-38043 could lead to non-compliance, resulting in 
fines, legal actions, and increased regulatory scrutiny. 

• Reputational Damage: The reputation of technology 
and IT services companies is heavily dependent on their 
ability to protect their own and their clients' data. A 
security incident could erode trust, potentially leading to 
loss of clients and difficulty in acquiring new business. 

• Financial Costs: The financial implications of 
responding to and recovering from a security breach can 
be substantial. Costs may include forensic 

investigations, system remediations, legal fees, and 
compensations for affected parties. 

6) Manufacturing and Critical Infrastructure industry 
In the Manufacturing and Critical Infrastructure industry, the 

exploitation of CVEs could have the following consequences: 

• Disruption of Operations: A DoS attack could disrupt 
access to critical systems and networks, affecting 
production lines, supply chain management, and 
operational technology (OT) environments. 

• Compromise of Sensitive Data: Elevated privileges 
could enable attackers to access, modify, or exfiltrate 
sensitive data, including proprietary manufacturing 
processes, infrastructure control systems data, and 
employee information. 

• Safety Risks: In critical infrastructure sectors, such as 
energy, water, and transportation, a system compromise 
could pose direct safety risks to the public and the 
environment. 

• Regulatory and Compliance Violations: Many 
manufacturing and critical infrastructure organizations 
are subject to regulatory requirements for cybersecurity. 
A security breach could lead to non-compliance, 
resulting in fines and legal actions. 

• Reputational Damage: A security incident in these 
industries can lead to a loss of confidence from 
customers, partners, and regulators, potentially affecting 
future business opportunities. 

• Financial Costs: The financial impact of a security 
breach can be considerable, including the costs of 
incident response, system restoration, and potential legal 
liabilities. 

7) Retail and Consumer Goods industry 
Here are some potential impacts and consequences of CVEs 

in the Retail and Consumer Goods industry: 

• Disruption of Retail Operations: A denial-of-service 
attack could disrupt access to critical retail systems, 
affecting sales, inventory management, and customer 
service. This could lead to lost revenue and dissatisfied 
customers. 

• Compromise of Sensitive Data: If the vulnerability 
leads to a system compromise, sensitive data such as 
customer payment information, proprietary business 
data, and employee information could be accessed or 
leaked. 

• Regulatory and Compliance Issues: Retailers are 
often subject to regulations regarding the protection of 
consumer data. A security breach could result in non-
compliance with these regulations, leading to legal and 
financial repercussions. 

• Reputational Damage: A security incident could 
damage the retailer's reputation, potentially affecting 
customer loyalty and brand value. 

• Financial Costs: The costs associated with responding 
to a security breach, including investigations, system 
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remediation, and potential legal liabilities, can be 
significant for retail organizations. 

III. EXTRA DETAILS 

The IOCTL number 0x80002018 is associated with a 
vulnerable function within the IRP_MJ_DEVICE_CONTROL 
callback of a kernel driver. This function is designed to handle 
specific I/O control codes (IOCTLs) that are sent from user-
mode applications to the driver. The code handling this IOCTL 
contains a privilege escalation vulnerability due to the following 
sequence of operations: 

• A pointer to input data passed from user-mode 
(systembuffer) is loaded. 

• The first value inside that input is taken as a pointer to a 
driver-specific structure. 

• A pointer at offset +28h inside that structure is loaded. 

• A pointer to offset +50h inside the memory that the 
previous pointer is pointing to is passed to the kernel 
API IoCsqRemoveIrp. 

• Additionally, the second argument provided to the 
IoCsqRemoveIrp call, which is located in the RDX 
register, is also under the control of the user. 

The IoCsqRemoveIrp function is a kernel API that removes 
an IRP (I/O Request Packet) from a queue using function 
pointers (callbacks) contained within the first argument passed 
to the API. The vulnerability arises because the user has control 
over this first argument, which means they can manipulate the 
function pointers used by IoCsqRemoveIrp to execute arbitrary 
code with kernel privileges. 

The IoCsqRemoveIrp function itself is relatively 
straightforward and uses the queue's dispatch routines to remove 
the specified IRP from the queue. However, the critical security 
issue here is that the user can control both the RCX and RDX 
registers, which are used as arguments to the function. Inside the 
function, there are multiple places where a pointer gets loaded 
from the first argument (RCX) and is then passed to 
_guard_dispatch_icall. This internal function is designed to call 
whatever function pointer is in the RAX register, but it has a 
significant limitation: the pointer in RAX must be at the start of 
a valid function that is part of the kernel image. This means that 
shellcode or non-kernel-image functions cannot be called 
directly. 

In summary, the vulnerability in the IOCTL handling code 
allows an attacker to control the function pointers used by 
IoCsqRemoveIrp, potentially leading to arbitrary code execution 
with kernel privileges. This is a serious security flaw that can be 
exploited for privilege escalation, allowing an attacker with local 
access to the system to gain full control over it. 

The constraints outlined in the scenario with the vulnerable 
IOCTL handling in a kernel driver illustrate the complexity and 
challenges in developing a reliable exploit for a kernel 
vulnerability. Let's break down these constraints and their 
implications for exploit development: 

A. Constraint 1: Guaranteed Bluescreen 

The automatic deallocation of the user-provided pointer via 
ExFreePoolWithTag at the end of the IOCTL handling routine 
presents a significant challenge. This operation requires a valid 
kernel pointer, which is difficult for a regular user to provide. 
Even if an attacker manages to supply a valid pointer, its 
deallocation could lead to kernel instability or corruption, likely 
resulting in a system crash (bluescreen). This constraint 
significantly complicates the development of a stable exploit, as 
it requires the exploit to either avoid triggering this deallocation 
or to ensure that the deallocation does not lead to adverse effects 
on system stability. 

B. Constraint 2: Heavily Limited Argument Control 

The limited control over the arguments passed to the 
functions called by IoCsqRemoveIrp through 
_guard_dispatch_icall poses another challenge. The exploit has 
control over the RCX register (pointing to a memory area with 
function pointers) and, in one instance, the RDX register 
(pointing to a controlled memory area). However, for the other 
calls, RDX points to a stack area outside the attacker's control, 
and the R8 register, which could potentially carry additional 
data, is not utilized within the context of these function calls. 
This limitation severely restricts the exploit's ability to 
manipulate the execution flow of the called functions, making it 
difficult to achieve arbitrary code execution without causing a 
system crash. 

C. Constraint 3: Guarded Calls 

The use of _guard_dispatch_icall as a defensive measure by 
Microsoft further complicates exploit development. This 
mechanism ensures that only pointers to legitimate functions 
within the ntoskrnl.exe image can be called, effectively 
preventing the execution of arbitrary shellcode or functions 
outside the kernel image. Finding a sequence of three functions 
within the kernel that can be called with the limited argument 
control available, without causing a crash, is a significant 
challenge. This constraint requires an in-depth understanding of 
the kernel's internals and available functions to identify a viable 
chain that could lead to successful exploitation. 

D. Bluescreen bypass 

To address the challenge of bypassing the guaranteed 
bluescreen after exploiting the vulnerability, the approach 
involves leveraging the last function call before the system 
crashes. The idea is to prevent execution from continuing after 
this last function call, without causing a system crash. The 
proposed solution involves using synchronization and locking 
functions, specifically targeting a kernel sync function that can 
lock the entire thread indefinitely, thus preventing it from 
reaching the ExFreePoolWithTag call that leads to a bluescreen. 

The chosen function is KxWaitForSpinLockAndAcquire for 
this purpose. This function takes a pointer in the RCX register 
and checks if the value at the start of the memory it points to is 
non-zero. If it is, the function enters a loop, checking the value 
repeatedly until it becomes zero. However, by setting the first 8 
bytes of the memory pointed to by RCX to a non-zero value, the 
thread can be locked in an infinite loop, effectively preventing 
the bluescreen without crashing the system. 
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However, locking a kernel thread in an infinite loop can 
significantly impact system performance, causing the computer 
to slow down after executing the exploit multiple times. To 
mitigate this, the exploit can adjust the thread's priority to the 
lowest possible setting using the SetThreadPriority() API with 
the THREAD_PRIORITY_LOWEST parameter. This ensures 
that the locked thread receives the least amount of CPU time, 
minimizing its impact on system performance. 

In summary, the strategy to bypass the bluescreen involves: 

• Using the KxWaitForSpinLockAndAcquire function to 
lock the thread in an infinite loop, preventing it from 
reaching the ExFreePoolWithTag call. 

• Setting the locked thread's priority to the lowest possible 
to minimize its impact on system performance. 

E. Reaching the vulnerable code 

To reach the vulnerable code and properly set up the 
IOCTL's input buffer to target the IoCsqRemoveIrp call, the 
following steps are taken in the provided code snippet: 

• A HANDLE to the device is obtained by calling 
CreateFile with the DEVICE_NAME. 

• An input buffer is allocated and initialized to zero using 
calloc. 

• The first 8 bytes of the input buffer are set to point to an 
initial_buffer. 

• The initial_buffer is then set up with pointers at offsets 
0x28 and 0x30 to point to buff_28h and buff_30h, 
respectively. 

• The DeviceIoControl function is called with the 
VULN_IOCTL code and the prepared input buffer. 

The code snippet is designed to satisfy the checks performed 
by the driver on the input buffer before calling IoCsqRemoveIrp. 
Specifically, it ensures that: 

• The first value in the input buffer is a non-NULL pointer 
to another buffer (initial_buffer). 

• The initial_buffer contains non-NULL pointers at 
offsets +0x28 and +0x30. 

• These pointers are used to pass a pointer to offset +0x50 
in the buffer that buff_28h points to as the first argument 
to IoCsqRemoveIrp. 

• The pointer loaded from offset +0x28 (buff_28h) is 
passed as the second argument to the function. 

By setting up the input buffer in this way and calling 
DeviceIoControl, the code reaches the vulnerable area of the 
driver code where IoCsqRemoveIrp is called, as confirmed by 
hitting the breakpoint in a debugger. 

The IoCsqRemoveIrp function is a kernel API that removes 
an IRP (I/O Request Packet) from a queue using function 
pointers (callbacks) contained within the first argument passed 
to the API. The vulnerability in the IOCTL handling code allows 
an attacker to control the function pointers used by 
IoCsqRemoveIrp, potentially leading to arbitrary code execution 
with kernel privileges. 

F. Controlling IoCsqRemoveIrp 

To control the IoCsqRemoveIrp function and prepare the 
input to satisfy all checks inside of it, the following steps are 
taken: 

• The input buffer is set up to reach the IoCsqRemoveIrp 
call, ensuring that the first 8 bytes of the input buffer are 
interpreted as a pointer to another buffer, and that this 
pointer is not NULL. 

• The buffer pointed to by the first 8 bytes of the input 
buffer is then set up with pointers at offsets +0x28 and 
+0x30 to point to buff_28h and buff_30h, respectively. 

• The buff_28h buffer is prepared with function pointers 
for the three function calls that IoCsqRemoveIrp will 
make. These pointers are placed at the appropriate 
offsets within buff_28h: 

o The first function call pointer is placed at offset 
+0x20. 

o The second function call pointer is placed at offset 
+0x10. 

o The third function call pointer is placed at offset 
+0x28. 

• A separate buffer, iocsq_rsi_plus_8h, is allocated and a 
non-zero value is placed at offset +0x68 to satisfy a 
check within IoCsqRemoveIrp. 

• The buff_30h buffer is set up to point to 
iocsq_rsi_plus_8h at offset +0x08, and a non-zero value 
is also placed at offset +0x68 within buff_30h. 

• To prevent a bluescreen after exploiting the 
vulnerability, the third function call is set to 
KxWaitForSpinLockAndAcquire, which will lock the 
thread indefinitely and prevent it from reaching the 
ExFreePoolWithTag call that would cause a bluescreen. 

• The first two function calls are set to HalMakeBeep, a 
harmless kernel function that does not crash and takes 
no arguments. 

• The buff_28h buffer at offset +0x50 is set to a non-zero 
value to provide a locked spinlock object to 
KxWaitForSpinLockAndAcquire. 

By setting up the input buffer in this way and calling 
DeviceIoControl with the VULN_IOCTL code, the exploit is 
able to reach the vulnerable area of the driver code where 
IoCsqRemoveIrp is called and control the function pointers used 
by IoCsqRemoveIrp, potentially leading to arbitrary code 
execution with kernel privileges 

G. Write What Where 

The vulnerabilities discovered in Ivanti Secure Access VPN, 
previously known as Pulse Secure VPN, by Northwave 
Cybersecurity have significant implications for cybersecurity. 
These vulnerabilities, specifically CVE-2023-38043, CVE-
2023-35080, and CVE-2023-38543, affect the VPN software 
utilized by over 40,000 organizations globally. The primary 
vulnerability allows for privilege escalation due to a kernel 
driver installed by the VPN software, which creates a device 
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readable and writable by any user. This flaw can potentially lead 
to kernel corruption or privilege escalation. 

The exploitation process detailed by Northwave involves 
stopping the VPN client to avoid memory corruptions, using the 
command "%programfiles(x86)%\Common Files\Pulse 
Secure\Integration\pulselauncher.exe" -stop. The timeline of the 
disclosure process began with an initial notice to DIVD on 
March 16, 2023, followed by a first reply from Ivanti regarding 
their responsible disclosure policy on March 20, 2023. 

Further complicating the situation, CISA has reported that 
attackers have found workarounds to current mitigations for 
vulnerabilities in Ivanti Connect Secure VPN devices, with over 
2,100 devices compromised in the attacks. These vulnerabilities, 
including CVE-2023-46805 and CVE-2024-21887, have been 
given severity scores of 8.2 and 9.1 out of 10.0, respectively. 
CISA recommends additional steps for customers to avoid being 
compromised or to minimize damage. 

H. Escalating privileges 

To escalate privileges and gain full control over a system, an 
attacker can exploit vulnerabilities that allow for privilege 
escalation. One common method is to manipulate access tokens, 
which are objects that describe the security context of a process 
or thread, including the identity and privileges of the user 
account associated with the process. By obtaining a token with 
higher privileges, an attacker can create a new process with 
elevated rights or replace the token of an existing process. A 
write-what-where condition is a vulnerability that allows an 
attacker to write an arbitrary value to an arbitrary location in 
memory. This can be exploited to overwrite critical data 
structures or function pointers, leading to arbitrary code 
execution. 

In the context of the Ivanti Secure Access VPN 
vulnerabilities, CVE-2023-38043, CVE-2023-35080, and CVE-
2023-38543, the exploitation process involves stopping the VPN 
client to avoid memory corruptions and then using the 
vulnerabilities to escalate privileges. The vulnerabilities allow 
for privilege escalation due to a kernel driver installed by the 
VPN software that creates a device readable and writable by any 
user, potentially leading to kernel corruption or privilege 
escalation. 

The exploitation process may involve finding the kernel 
pointer for the token object using the 
SystemExtendedHandleInformation class in the 
NtQuerySystemInformation API and then using a write 
primitive to overwrite the TOKEN-
>_SEP_TOKEN_PRIVILEGES->Enabled and TOKEN-
>_SEP_TOKEN_PRIVILEGES->Present fields to grant 
system-level privileges to the process. This can be followed by 
spawning a shell with elevated privileges. 

I. Enabling The Vulnerable Driver 

To enable the vulnerable driver in Ivanti Secure Access 
VPN, which is typically disabled by default, an attacker can 
replicate the behavior that automatically starts the driver when a 
user connects to a VPN server with TDI fail-over enabled. This 
can be done by setting up a rogue Ivanti Secure Access VPN 
server and configuring it to use TDI fail-over.  

• Download an Image: Obtain an Ivanti Secure Access 
VPN server VM image from the official site. 

• Install the Server: Install the downloaded VM image 
on a Virtual Private Server (VPS) or locally. Ensure that 
you can point a domain name to it, such as vpn.rogue-
server.com.  

• Complete the VM Setup: Boot the VM image and 
complete the setup as prompted. After finishing, you can 
access the admin portal via the web. 

• Configure a Valid Certificate: Obtain a valid 
certificate for a rogue server domain (e.g., vpn.rogue-
server.com) using a service like Let's Encrypt. Upload 
the fullchain.pem and privkey.pem to the admin portal 
under System -> Configuration -> Certificates -> Device 
certificate. Delete any pre-configured self-signed 
certificate and configure your valid certificate to be used 
by the internal and external ports. 

• Restrict VPN & Configure TDI-Failover: In the 
admin portal, navigate to Users -> User Roles -> Users. 
Uncheck all Access Features except for Secure 
Application Manager & Windows/Mac version sub-
item. Then, enable Enable fail-over to TDI for Pulse 
SAM connection under the SAM -> Options tab. 

• Create a VPN User: Go to Authentication -> Auth. 
Servers -> System Local -> Users tab and create a new 
user with a static username and password. This user will 
be used to connect to the rogue VPN. 

• Let Victim Connect to the Rogue Server: Have the 
victim connect to the rogue server by providing the 
URL, username/password of the user you created, and 
the realm which that user is in (default is Users). Use the 
following command to connect: 

"%programfiles(x86)%\Common Files\Pulse 
Secure\Integration\pulselauncher.exe" -url 
YOUR_DOMAIN -u YOUR_USER -p YOUR_PASS -
r Users 

For example: 

"%programfiles(x86)%\Common Files\Pulse 
Secure\Integration\pulselauncher.exe" -url vpn.rogue-
server.com -u steve -p Welcome01! -r Users 

• Stop the VPN Client: Before running the privilege 
escalation exploit, stop the VPN client to prevent 
memory corruptions using the command: 

"%programfiles(x86)%\Common Files\Pulse 
Secure\Integration\pulselauncher.exe" -stop 

By following these steps, an attacker can enable the 
vulnerable driver and potentially exploit the vulnerabilities 
CVE-2023-38043, CVE-2023-35080, and CVE-2023-38543 in 
Ivanti Secure Access VPN to escalate privileges 

IV. POC “MAIN.C” 

The code relates to the Ivanti Pulse VPN Client Exploit for 
CVE-2023-35080 is designed to exploit a vulnerability in the 
Ivanti Secure Access Windows client, allowing for privilege 
escalation, denial of service (DoS), or information disclosure.  
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A. How the Code Works 

• Thread Priority Adjustment: The code starts by 
attempting to set the current thread's priority to 
background mode to minimize its impact on the system's 
performance. 

• Memory Allocation and Configuration: It allocates 
memory for various buffers (input_buffer, 
initial_buffer, buff_30h, iocsq_rsi_plus_8h) and 
configures them to construct a malicious payload. This 
includes setting up a pointer (buff_28h) to hold the byte 
value intended to be written into a vulnerable 
component within the driver's memory space. 

• Kernel Base Address Retrieval: The code retrieves the 
base address of the kernel (ntoskrnl_base) to calculate 
the addresses of specific functions or offsets within the 
kernel that the exploit intends to manipulate. 

• Function Pointers Setting: It sets up function pointers 
within the prepared buffers to point to malicious or 
controlled code segments or to trigger the vulnerability 
within the Ivanti Secure Access Client driver. 

• Triggering the Vulnerability: The exploit triggers the 
vulnerability by making a DeviceIoControl call with the 
prepared input_buffer, which contains the malicious 
payload designed to exploit the vulnerability. 

• Privilege Escalation: If successful, the exploit modifies 
the current process's token privileges or performs other 
unauthorized actions, leading to privilege escalation, 
DoS, or information disclosure. 

B. Incoming Data: 

• Target Device Path: The path to the vulnerable device 
or driver that the exploit targets. 

• Byte Value (what): The specific byte value that the 
exploit intends to write into the target memory location. 

• Target Memory Address (where): The memory 
address within the vulnerable component or driver 
where the exploit intends to write the byte value. 

C. Outgoing Data/Result 

• Exploit Status Messages: The code prints status 
messages indicating the success or failure of various 
steps, such as setting thread priority, creating threads, 
and executing the exploit. 

• Privileged Access: If the exploit is successful, it 
achieves elevated privileges for the current process, 
allowing it to perform actions that were previously 
restricted. 

• Potential System Modification: Depending on the 
exploit's intent, it could modify system settings, disable 
security measures, or perform other unauthorized 
actions as a result of the privilege escalation. 

V. POC “KERNEL.C” 

The code targets a vulnerability in a system driver, likely 
related to the Ivanti Pulse VPN Client Exploit for CVE-2023-

35080. The code is written in C and includes several functions 
that interact with the Windows operating system at a low level 
to manipulate device handles and memory.  

A. How the Code Works 

• BuildDevicePath: Constructs the device path string for 
the vulnerable driver. 

• OpenDevice: Opens a handle to the device using the 
CreateFileW function, which allows for reading and writing 
to the device. 

• CloseDevice: Closes the handle to the device and frees 
associated memory. 

• GetFunctionOffset: Retrieves the offset of a function 
within the ntoskrnl.exe file, which is the Windows NT 
kernel. 

• GetKernelBase: Determines the base address of the 
kernel by querying system information. 

• GetObjectPointedByHandle: Retrieves the kernel 
object pointed to by a given handle, which could be used to 
manipulate or read information from that object. 

B. Incoming Data 

• DevicePath: A string representing the path to the 
vulnerable device or driver. 

• DEVICE_NAME_W: The name of the device, which 
is used to construct the device path. 

• hDevice: A pointer to a handle that will be used to 
interact with the device. 

• fnName: The name of the function whose offset is 
being retrieved. 

• h: a handle whose pointed object is being retrieved. 

C. Outgoing Data/Result 

• DevicePath: The full device path string that is 
constructed and used to open a handle to the device. 

• hDevice: The handle obtained by opening the device, 
which can be used for further interaction with the 
device. 

• FnOffset: The offset of the specified function within 
the kernel's executable image. 

• KernelBase: The base address of the kernel obtained 
from the system information. 

• Object: The kernel object pointed to by the specified 
handle, which can be manipulated or read. 

The code is designed to perform low-level operations that are 
typically part of an exploit chain. These operations include 
opening a handle to a vulnerable driver, determining the location 
of certain functions or data within the kernel, and potentially 
using this information to manipulate the system in a way that 
exploits the vulnerability. 

 

 

 

https://boosty.to/overkill_security
https://sponsr.ru/overkill_security
https://t.me/+R4HHcEavAo9kNjUx

