logo Кочетов Алексей

Как достичь Марса за 60 дней? На Российских плазменных крыльях

Что ‎общего‏ ‎между ‎древнегреческим ‎Икаром ‎и ‎современным‏ ‎плазменным ‎двигателем?‏ ‎Оба‏ ‎воплощают ‎извечное ‎стремление‏ ‎человечества ‎преодолеть‏ ‎границы ‎возможного. ‎Но ‎если‏ ‎мифический‏ ‎герой ‎расплатился‏ ‎за ‎свою‏ ‎дерзость ‎падением, ‎то ‎российские ‎ученые‏ ‎предлагают‏ ‎куда ‎более‏ ‎надежный ‎способ‏ ‎покорения ‎космических ‎просторов.

В ‎научных ‎лабораториях‏ ‎Росатома‏ ‎завершилась‏ ‎разработка, ‎способная‏ ‎перевернуть ‎наше‏ ‎представление ‎о‏ ‎межпланетных‏ ‎путешествиях. ‎Прототип‏ ‎плазменного ‎электрореактивного ‎двигателя ‎— ‎это‏ ‎не ‎просто‏ ‎очередное‏ ‎техническое ‎достижение, ‎а‏ ‎потенциальный ‎ключ‏ ‎к ‎дальнему ‎космосу, ‎который‏ ‎веками‏ ‎манил ‎человечество‏ ‎своими ‎тайнами.


Представьте:‏ ‎путешествие ‎до ‎Марса, ‎занимающее ‎сегодня‏ ‎почти‏ ‎год, ‎в‏ ‎перспективе ‎может‏ ‎сократиться ‎до ‎30–60 ‎дней. ‎И‏ ‎это‏ ‎уже‏ ‎не ‎выглядит‏ ‎как ‎полная‏ ‎фантастика, ‎реальность‏ ‎подобных‏ ‎скоростных ‎полетов,‏ ‎основанная ‎на ‎впечатляющих ‎характеристиках ‎нового‏ ‎двигателя: ‎тяга‏ ‎не‏ ‎менее ‎6 ‎Н,‏ ‎удельный ‎импульс‏ ‎более ‎100 ‎км/с ‎и‏ ‎средняя‏ ‎мощность ‎в‏ ‎300 ‎кВт.

За‏ ‎этими ‎сухими ‎цифрами ‎скрывается ‎революционный‏ ‎потенциал‏ ‎— ‎возможность‏ ‎разгонять ‎космические‏ ‎аппараты ‎до ‎скоростей, ‎недоступных ‎традиционным‏ ‎химическим‏ ‎двигателям,‏ ‎летать ‎напрямую‏ ‎в ‎любую‏ ‎точку ‎Солнечной‏ ‎системы,‏ ‎минуя ‎гравитационные‏ ‎маневры, ‎без ‎которых ‎добраться ‎до‏ ‎отдаленных ‎уголков‏ ‎Солнечной‏ ‎системы ‎сегодня ‎невозможно.

Ракетный‏ ‎плазменный ‎двигатель‏ ‎«Росатома» ‎уже ‎в ‎виде‏ ‎прототипа‏ ‎имеет ‎тягу‏ ‎в ‎6‏ ‎Ньютонов, ‎или ‎0,612 ‎килограмма ‎силы‏ ‎(кгс),‏ ‎а ‎по‏ ‎словам ‎первого‏ ‎заместителя ‎генерального ‎директора ‎по ‎науке‏ ‎Троицкого‏ ‎института‏ ‎инновационных ‎и‏ ‎термоядерных ‎исследований‏ ‎(ТРИНИТИ) ‎Алексея‏ ‎Воронова,‏ ‎в ‎перспективе‏ ‎(к ‎2030 ‎году) ‎тягу ‎поднимут‏ ‎до ‎15‏ ‎Ньютонов,‏ ‎а ‎это ‎уже‏ ‎1,53 ‎кгс.


Российские‏ ‎ученые ‎совершили ‎прорыв ‎в‏ ‎увеличении‏ ‎мощности ‎и‏ ‎тяги ‎электрических‏ ‎ракетных ‎двигателей. ‎Ранее ‎никто ‎не‏ ‎достигал‏ ‎подобных ‎характеристик.

Например,‏ ‎традиционные ‎ионные‏ ‎двигатели, ‎такие ‎как ‎NASA ‎NEXT,‏ ‎обладают‏ ‎максимальной‏ ‎мощностью ‎6,9‏ ‎кВт ‎и‏ ‎тягой ‎0,236‏ ‎Н‏ ‎(0,024 ‎кгс).‏ ‎Их ‎удельный ‎импульс ‎составляет ‎4150‏ ‎секунд, ‎что‏ ‎соответствует‏ ‎скорости ‎истечения ‎газов‏ ‎40,7 ‎км‏ ‎в ‎секунду.

  • Российские ‎ионные ‎двигатели‏ ‎ИД-300,‏ ‎созданные ‎в‏ ‎Центре ‎Келдыша,‏ ‎обладают ‎мощностью ‎от ‎2 ‎до‏ ‎4‏ ‎кВт ‎и‏ ‎тягой ‎от‏ ‎0,08 ‎до ‎0,12 ‎Н. ‎Более‏ ‎мощная‏ ‎версия‏ ‎двигателя ‎ИД-300В‏ ‎может ‎выдавать‏ ‎10 ‎кВт‏ ‎и‏ ‎развивать ‎тягу‏ ‎до ‎0,220 ‎Н, ‎обеспечивая ‎удельный‏ ‎импульс ‎7000‏ ‎секунд,‏ ‎что ‎эквивалентно ‎скорости‏ ‎около ‎68,7‏ ‎км/сек.


Существуют ‎прототипы ‎плазменных ‎двигателей,‏ ‎которые‏ ‎отличаются ‎более‏ ‎высокой ‎мощностью‏ ‎и ‎тягой, ‎но ‎даже ‎среди‏ ‎них‏ ‎российская ‎разработка‏ ‎выделяется ‎своими‏ ‎выдающимися ‎характеристиками.

Например, ‎ионный ‎двигатель ‎«X3»,‏ ‎созданный‏ ‎в‏ ‎сотрудничестве ‎между‏ ‎Университетом ‎Мичигана,‏ ‎NASA ‎и‏ ‎Воздушными‏ ‎силами ‎США‏ ‎(AFRL), ‎представляет ‎собой ‎инновационный ‎трёхканальный‏ ‎двигатель ‎Холла.‏ ‎Этот‏ ‎двигатель ‎достиг ‎тяги‏ ‎в ‎5,4‏ ‎Н ‎при ‎мощности ‎102‏ ‎кВт,‏ ‎однако ‎его‏ ‎удельный ‎импульс‏ ‎оказался ‎значительно ‎ниже ‎— ‎1800–2650‏ ‎секунд,‏ ‎что ‎эквивалентно‏ ‎скорости ‎истечения‏ ‎газов ‎от ‎17 ‎до ‎26‏ ‎километров‏ ‎в‏ ‎секунду.

Магнитоплазменный ‎ракетный‏ ‎двигатель ‎VASIMR,‏ ‎которые ‎американцы‏ ‎разрабатывают‏ ‎уже ‎более‏ ‎40 ‎лет ‎(с ‎1983 ‎года),‏ ‎достиг ‎более‏ ‎впечатляющих‏ ‎показателей:

  • Максимальная ‎мощность ‎—‏ ‎200 ‎кВт;
  • Тяга‏ ‎5,8 ‎Н, ‎при ‎максимальной‏ ‎мощности;
  • Удельный‏ ‎импульс ‎—‏ ‎3000-5000 ‎сек;
  • Скорость‏ ‎реактивной ‎струи ‎от ‎29,4 ‎км/с‏ ‎до‏ ‎49,1 ‎км/с.


Важно‏ ‎отметить, ‎что‏ ‎на ‎данный ‎момент ‎при ‎увеличении‏ ‎тяги‏ ‎и‏ ‎мощности ‎двигателя‏ ‎происходит ‎снижение‏ ‎удельного ‎импульса.‏ ‎Это‏ ‎означает, ‎что‏ ‎двигатель ‎начинает ‎расходовать ‎больше ‎топлива‏ ‎и ‎теряет‏ ‎свою‏ ‎эффективность. ‎Чем ‎выше‏ ‎удельный ‎импульс,‏ ‎тем ‎меньше ‎топлива ‎требуется‏ ‎космическому‏ ‎кораблю ‎для‏ ‎достижения ‎высоких‏ ‎скоростей.

Чтобы ‎добиться ‎желаемых ‎характеристик, ‎приходится‏ ‎идти‏ ‎на ‎компромиссы.‏ ‎Например, ‎увеличение‏ ‎соотношения ‎тяги ‎к ‎мощности ‎приводит‏ ‎к‏ ‎снижению‏ ‎удельного ‎импульса.

При‏ ‎мощности ‎100‏ ‎кВт ‎двигатель‏ ‎«X3»‏ ‎обеспечивает ‎тягу‏ ‎в ‎5,4 ‎Н, ‎что ‎почти‏ ‎соответствует ‎показателям‏ ‎двигателя‏ ‎«Росатома», ‎к ‎тому‏ ‎же ‎российский‏ ‎прототип ‎тратит ‎почти ‎в‏ ‎три‏ ‎раза ‎больше‏ ‎энергии ‎для‏ ‎создания ‎тяги ‎в ‎6 ‎Н.

Однако‏ ‎у‏ ‎двигателя ‎«Росатома»‏ ‎есть ‎значительное‏ ‎преимущество: ‎эффективная ‎скорость ‎истечения ‎газов‏ ‎составляет‏ ‎не‏ ‎менее ‎100‏ ‎км/с, ‎в‏ ‎то ‎время‏ ‎как‏ ‎у ‎«X3»‏ ‎— ‎максимум ‎26 ‎км/с.

  • Да, ‎разница‏ ‎между ‎генерацией‏ ‎энергии‏ ‎мощностью ‎100 ‎кВт‏ ‎и ‎300‏ ‎кВт ‎очень ‎велика, ‎особенно‏ ‎в‏ ‎условиях ‎космоса.‏ ‎Это ‎значительно‏ ‎снижает ‎эффективность ‎ракетного ‎двигателя.

Справедливости ‎ради‏ ‎стоит‏ ‎отметить, ‎что‏ ‎для ‎обеспечения‏ ‎высокой ‎мощности ‎двигателя ‎требуется ‎больше‏ ‎генераторов‏ ‎и‏ ‎систем ‎охлаждения.‏ ‎Эта ‎зависимость‏ ‎можно ‎описать‏ ‎как‏ ‎линейную: ‎чем‏ ‎мощнее ‎двигатель, ‎тем ‎больше ‎масса‏ ‎корабля ‎должна‏ ‎быть‏ ‎для ‎его ‎эффективной‏ ‎работы.

Поэтому ‎для‏ ‎сравнения ‎можно ‎рассмотреть ‎два‏ ‎корабля:‏ ‎один ‎массой‏ ‎10 ‎тонн,‏ ‎а ‎другой ‎— ‎30 ‎тонн.‏ ‎В‏ ‎первом ‎из‏ ‎них ‎1‏ ‎тонна ‎приходится ‎на ‎полезную ‎нагрузку,‏ ‎8‏ ‎тонн‏ ‎— ‎на‏ ‎энергетические ‎и‏ ‎охлаждающие ‎системы,‏ ‎а‏ ‎также ‎1‏ ‎тонна ‎— ‎на ‎топливо. ‎Этот‏ ‎корабль ‎будет‏ ‎оснащён‏ ‎двигателем ‎«X3» ‎и‏ ‎сможет ‎развить‏ ‎скорость ‎около ‎2600 ‎м/с‏ ‎за‏ ‎55,6 ‎дней,‏ ‎исчерпав ‎запасы‏ ‎топлива.


Второй ‎аппарат, ‎оснащённый ‎двигателем ‎«Росатома»‏ ‎(6‏ ‎Н ‎и‏ ‎300 ‎кВт),‏ ‎способен ‎развивать ‎скорость ‎до ‎3333‏ ‎м/с.‏ ‎Он‏ ‎может ‎проработать‏ ‎193 ‎дня,‏ ‎пока ‎не‏ ‎закончится‏ ‎топливо. ‎Полезная‏ ‎нагрузка ‎составляет ‎1 ‎тонну, ‎а‏ ‎вес ‎энергетических‏ ‎систем‏ ‎и ‎систем ‎охлаждения‏ ‎— ‎28‏ ‎тонн.

Но ‎что ‎нам ‎дают‏ ‎эти‏ ‎сухие ‎цифры?‏ ‎Сколько ‎времени‏ ‎потребуется, ‎чтобы ‎долететь ‎до ‎Марса?

Если‏ ‎учесть‏ ‎разницу ‎в‏ ‎ускорении ‎кораблей,‏ ‎то ‎первый ‎корабль ‎с ‎двигателем‏ ‎«X3»‏ ‎разгоняется‏ ‎в ‎2,7‏ ‎раза ‎быстрее,‏ ‎чем ‎втрое‏ ‎более‏ ‎массивный ‎корабль‏ ‎с ‎двигателем ‎«Росатома». ‎Однако ‎последний‏ ‎способен ‎ускоряться‏ ‎дольше‏ ‎и ‎развивать ‎более‏ ‎высокие ‎скорости.

Опуская‏ ‎подробности ‎расчетов, ‎можно ‎сказать,‏ ‎что‏ ‎10-тонный ‎корабль‏ ‎достигнет ‎Марса‏ ‎за ‎1030 ‎дней. ‎Из ‎этого‏ ‎времени‏ ‎5,4% ‎он‏ ‎будет ‎ускоряться,‏ ‎а ‎остальные ‎94,6% ‎— ‎двигаться‏ ‎по‏ ‎инерции.

Космический‏ ‎корабль ‎весом‏ ‎30 ‎тонн‏ ‎с ‎двигателем‏ ‎от‏ ‎«Росатома» ‎будет‏ ‎ускоряться ‎в ‎течение ‎22% ‎времени‏ ‎полета, ‎а‏ ‎остальные‏ ‎78% ‎— ‎двигаться‏ ‎по ‎инерции.‏ ‎Он ‎сможет ‎достичь ‎орбиты‏ ‎Марса‏ ‎за ‎877‏ ‎дней.

Самая ‎сложная‏ ‎задача ‎— ‎преодолеть ‎энергетический ‎барьер.‏ ‎Почему‏ ‎бы ‎не‏ ‎создать ‎плазменный‏ ‎двигатель ‎мощностью, ‎например, ‎1000 ‎кВт‏ ‎или‏ ‎50‏ ‎мегаватт, ‎что‏ ‎позволило ‎бы‏ ‎сократить ‎время‏ ‎полёта‏ ‎к ‎Марсу‏ ‎до ‎реальных ‎60 ‎дней? ‎Это‏ ‎было ‎серьёзной‏ ‎проблемой,‏ ‎но, ‎кажется, ‎российские‏ ‎учёные ‎нашли‏ ‎способ ‎увеличить ‎как ‎мощность‏ ‎двигателя,‏ ‎так ‎и‏ ‎его ‎тягу,‏ ‎сохраняя ‎высокие ‎показатели ‎удельного ‎импульса.

При‏ ‎тяге‏ ‎в ‎15‏ ‎Н, ‎которую‏ ‎запланировали ‎достигнуть ‎в ‎2030 ‎году,‏ ‎мощность‏ ‎двигателя‏ ‎возрастёт ‎до‏ ‎750 ‎кВт.‏ ‎О ‎таких‏ ‎мощных‏ ‎электрических ‎ракетных‏ ‎двигателях ‎мир ‎может ‎только ‎мечтать.

Разработка‏ ‎российских ‎учёных‏ ‎—‏ ‎это ‎очень ‎большой‏ ‎шаг ‎в‏ ‎сторону ‎увеличения ‎мощности ‎электрических‏ ‎ракетных‏ ‎двигателей. ‎До‏ ‎этого ‎ни‏ ‎один ‎аналог ‎даже ‎не ‎приблизился‏ ‎к‏ ‎подобным ‎характеристикам‏ ‎тяги, ‎мощности‏ ‎и ‎удельного ‎импульса.

Таким ‎образом, ‎энергетический‏ ‎барьер‏ ‎был‏ ‎успешно ‎преодолён,‏ ‎что ‎открывает‏ ‎перед ‎человечеством‏ ‎путь‏ ‎к ‎созданию‏ ‎мощных ‎плазменных ‎двигателей ‎практически ‎любого‏ ‎класса. ‎Теперь‏ ‎всё‏ ‎зависит ‎от ‎наличия‏ ‎достаточного ‎количества‏ ‎энергии ‎для ‎их ‎питания.

Но‏ ‎технологический‏ ‎прорыв ‎не‏ ‎ограничивается ‎только‏ ‎двигательной ‎установкой. ‎В ‎подмосковном ‎Троицке‏ ‎создается‏ ‎уникальный ‎испытательный‏ ‎стенд ‎с‏ ‎вакуумной ‎камерой ‎впечатляющих ‎размеров: ‎4‏ ‎метра‏ ‎в‏ ‎диаметре, ‎14‏ ‎метров ‎в‏ ‎длину. ‎Это‏ ‎сооружение‏ ‎станет ‎земным‏ ‎полигоном ‎для ‎космических ‎технологий ‎будущего,‏ ‎где ‎в‏ ‎условиях,‏ ‎максимально ‎приближенных ‎к‏ ‎реальным ‎космическим,‏ ‎будут ‎отрабатываться ‎новые ‎решения‏ ‎для‏ ‎межпланетных ‎полетов.


Параллельно‏ ‎с ‎этим‏ ‎специалисты ‎АО ‎«ИФТП» ‎создали ‎установку,‏ ‎способную‏ ‎воспроизводить ‎космическую‏ ‎радиацию ‎—‏ ‎один ‎из ‎главных ‎вызовов ‎дальних‏ ‎космических‏ ‎путешествий.‏ ‎А ‎легендарный‏ ‎модуль ‎«Матрешка»,‏ ‎детище ‎АО‏ ‎«СНИИП»,‏ ‎уже ‎два‏ ‎десятилетия ‎собирает ‎бесценные ‎данные ‎о‏ ‎воздействии ‎космического‏ ‎излучения‏ ‎на ‎человеческий ‎организм‏ ‎на ‎борту‏ ‎МКС.


Все ‎эти ‎разработки ‎—‏ ‎части‏ ‎единого ‎пазла,‏ ‎складывающегося ‎в‏ ‎амбициозную ‎картину ‎российской ‎космической ‎программы.

  • Интеграция‏ ‎всех‏ ‎этих ‎технологий‏ ‎происходит ‎в‏ ‎рамках ‎масштабной ‎государственной ‎программы.

С ‎2025‏ ‎года‏ ‎работы‏ ‎по ‎федеральным‏ ‎проектам ‎КП‏ ‎РТТН ‎стали‏ ‎частью‏ ‎нового ‎национального‏ ‎проекта ‎«Новые ‎атомные ‎и ‎энергетические‏ ‎технологии». ‎Это‏ ‎означает‏ ‎не ‎только ‎существенное‏ ‎финансирование, ‎но‏ ‎и ‎признание ‎стратегической ‎важности‏ ‎космических‏ ‎разработок ‎на‏ ‎государственном ‎уровне.


Завершая‏ ‎размышление ‎о ‎новых ‎горизонтах ‎космической‏ ‎эры,‏ ‎нельзя ‎не‏ ‎вспомнить ‎слова‏ ‎Константина ‎Циолковского: ‎«Земля ‎— ‎колыбель‏ ‎человечества,‏ ‎но‏ ‎нельзя ‎вечно‏ ‎оставаться ‎в‏ ‎колыбели».

Похоже, ‎российская‏ ‎наука‏ ‎делает ‎решительный‏ ‎шаг ‎к ‎тому, ‎чтобы ‎человечество‏ ‎наконец ‎покинуло‏ ‎свою‏ ‎космическую ‎колыбель, ‎вооружившись‏ ‎не ‎восковыми‏ ‎крыльями ‎мифического ‎Икара, ‎а‏ ‎надежными‏ ‎плазменными ‎двигателями,‏ ‎на ‎которых‏ ‎будут ‎массово ‎летать ‎космические ‎корабли‏ ‎второй‏ ‎половины ‎XXI‏ ‎века.

Предыдущий Следующий
Все посты проекта
2 комментария

Комментарий удален. Восстановить?
7
avatar
Уровень внутри проекта
7
Уровень на sponsr.ru
7
Петрекон 8 дней назад
Это обе хорошие новости. Но от радиации радикально укроют только породы астероидов. Да и средства преодоления гравитационного колодца тоже забывать не следует. Хочу предложить Вам, Алексей, совершить кое-какие расчеты для одного возможного проекта. Только как нам связаться...
Комментарий удален. Восстановить?
A
avatar
Уровень внутри проекта
A
Уровень на sponsr.ru
147
Кочетов Алексей 7 дней назад
Через личные сообщения можно связаться.

Подарить подписку

Будет создан код, который позволит адресату получить бесплатный для него доступ на определённый уровень подписки.

Оплата за этого пользователя будет списываться с вашей карты вплоть до отмены подписки. Код может быть показан на экране или отправлен по почте вместе с инструкцией.

Будет создан код, который позволит адресату получить сумму на баланс.

Разово будет списана указанная сумма и зачислена на баланс пользователя, воспользовавшегося данным промокодом.

Добавить карту
0/2048