logo Хроники кибер-безопасника

MediHunt

Статья ‎"‏ ‎MediHunt: ‎A ‎Network ‎Forensics ‎Framework‏ ‎for ‎Medical‏ ‎IoT‏ ‎Devices» ‎— ‎это‏ ‎настоящий ‎прорыв.‏ ‎Она ‎начинается ‎с ‎рассмотрения‏ ‎насущной‏ ‎потребности ‎в‏ ‎надёжной ‎сетевой‏ ‎криминалистике ‎в ‎среде ‎медицинского ‎Интернета‏ ‎вещей‏ ‎(MIoT). ‎Вы‏ ‎знаете, ‎что‏ ‎среды, ‎в ‎которых ‎используются ‎сети‏ ‎передачи‏ ‎телеметрии‏ ‎с ‎использованием‏ ‎MQTT ‎(Message‏ ‎Queuing ‎Telemetry‏ ‎Transport),‏ ‎являются ‎любимыми‏ ‎для ‎умных ‎больниц ‎из-за ‎их‏ ‎облегчённого ‎протокола‏ ‎связи.

MediHunt‏ ‎— ‎это ‎платформа‏ ‎автоматической ‎сетевой‏ ‎криминалистики, ‎предназначенная ‎для ‎обнаружения‏ ‎атак‏ ‎на ‎сетевой‏ ‎трафик ‎в‏ ‎сетях ‎MQTT ‎в ‎режиме ‎реального‏ ‎времени.‏ ‎Она ‎использует‏ ‎модели ‎машинного‏ ‎обучения ‎для ‎расширения ‎возможностей ‎обнаружения‏ ‎и‏ ‎подходит‏ ‎для ‎развёртывания‏ ‎на ‎устройствах‏ ‎MIoT ‎с‏ ‎ограниченными‏ ‎ресурсами. ‎Потому‏ ‎что, ‎естественно, ‎именно ‎из-за ‎этого‏ ‎мы ‎все‏ ‎потеряли‏ ‎сон.

Эти ‎аспекты ‎—‏ ‎отличная ‎почва‏ ‎для ‎подробного ‎обсуждения ‎фреймворка,‏ ‎его‏ ‎экспериментальной ‎установки‏ ‎и ‎оценки.‏ ‎Вам ‎уже ‎не ‎терпится ‎погрузиться‏ ‎в‏ ‎эти ‎захватывающие‏ ‎подробности?

-------

В ‎документе‏ ‎рассматривается ‎необходимость ‎надёжной ‎сетевой ‎криминалистики‏ ‎в‏ ‎медицинских‏ ‎средах ‎Интернета‏ ‎вещей ‎(MIoT),‏ ‎особенно ‎с‏ ‎упором‏ ‎на ‎сети‏ ‎MQTT. ‎Эти ‎сети ‎обычно ‎используются‏ ‎в ‎интеллектуальных‏ ‎больничных‏ ‎средах ‎благодаря ‎их‏ ‎облегчённому ‎протоколу‏ ‎связи. ‎Освещаются ‎проблемы ‎обеспечения‏ ‎безопасности‏ ‎устройств ‎MIoT,‏ ‎которые ‎часто‏ ‎ограничены ‎в ‎ресурсах ‎и ‎обладают‏ ‎ограниченной‏ ‎вычислительной ‎мощностью.‏ ‎В ‎качестве‏ ‎серьёзной ‎проблемы ‎упоминается ‎отсутствие ‎общедоступных‏ ‎потоковых‏ ‎наборов‏ ‎данных, ‎специфичных‏ ‎для ‎MQTT,‏ ‎для ‎обучения‏ ‎систем‏ ‎обнаружения ‎атак.

MediHunt‏ ‎как ‎решение ‎для ‎автоматизированной ‎сетевой‏ ‎криминалистики, ‎предназначенное‏ ‎для‏ ‎обнаружения ‎атак ‎на‏ ‎основе ‎сетевого‏ ‎трафика ‎в ‎сетях ‎MQTT‏ ‎в‏ ‎режиме ‎реального‏ ‎времени. ‎Его‏ ‎цель ‎— ‎предоставить ‎комплексное ‎решение‏ ‎для‏ ‎сбора ‎данных,‏ ‎анализа, ‎обнаружения‏ ‎атак, ‎представления ‎и ‎сохранения ‎доказательств.‏ ‎Он‏ ‎разработан‏ ‎для ‎обнаружения‏ ‎различных ‎уровней‏ ‎TCP ‎/‏ ‎IP‏ ‎и ‎атак‏ ‎прикладного ‎уровня ‎в ‎сетях ‎MQTT‏ ‎и ‎использует‏ ‎модели‏ ‎машинного ‎обучения ‎для‏ ‎расширения ‎возможностей‏ ‎обнаружения ‎и ‎подходит ‎для‏ ‎развёртывания‏ ‎на ‎устройствах‏ ‎MIoT ‎с‏ ‎ограниченными ‎ресурсами.

Преимущества

📌 Обнаружение ‎атак ‎в ‎режиме‏ ‎реального‏ ‎времени: MediHunt ‎предназначен‏ ‎для ‎обнаружения‏ ‎атак ‎на ‎основе ‎сетевого ‎трафика‏ ‎в‏ ‎режиме‏ ‎реального ‎времени‏ ‎для ‎уменьшения‏ ‎потенциального ‎ущерба‏ ‎и‏ ‎обеспечения ‎безопасности‏ ‎сред ‎MIoT.

📌 Комплексные ‎возможности ‎криминалистики: Платформа ‎предоставляет‏ ‎комплексное ‎решение‏ ‎для‏ ‎сбора ‎данных, ‎анализа,‏ ‎обнаружения ‎атак,‏ ‎представления ‎и ‎сохранения ‎доказательств.‏ ‎Это‏ ‎делает ‎его‏ ‎надёжным ‎инструментом‏ ‎сетевой ‎криминалистики ‎в ‎средах ‎MIoT.

📌 Интеграция‏ ‎с‏ ‎машинным ‎обучением:‏ ‎Используя ‎модели‏ ‎машинного ‎обучения, ‎MediHunt ‎расширяет ‎свои‏ ‎возможности‏ ‎обнаружения.‏ ‎Использование ‎пользовательского‏ ‎набора ‎данных,‏ ‎который ‎включает‏ ‎данные‏ ‎о ‎потоках‏ ‎как ‎для ‎атак ‎уровня ‎TCP/IP,‏ ‎так ‎и‏ ‎для‏ ‎атак ‎прикладного ‎уровня,‏ ‎позволяет ‎более‏ ‎точно ‎и ‎эффективно ‎обнаруживать‏ ‎широкий‏ ‎спектр ‎кибератак.

📌 Высокая‏ ‎производительность: ‎решение‏ ‎показало ‎высокую ‎производительность, ‎получив ‎баллы‏ ‎F1‏ ‎и ‎точность‏ ‎обнаружения, ‎превышающую‏ ‎0,99 ‎и ‎указывает ‎на ‎то,‏ ‎что‏ ‎она‏ ‎обладает ‎высокой‏ ‎надёжностью ‎при‏ ‎обнаружении ‎атак‏ ‎на‏ ‎сети ‎MQTT.

📌 Эффективность‏ ‎использования ‎ресурсов: ‎несмотря ‎на ‎свои‏ ‎широкие ‎возможности,‏ ‎MediHunt‏ ‎разработан ‎с ‎учётом‏ ‎экономии ‎ресурсов,‏ ‎что ‎делает ‎его ‎подходящим‏ ‎для‏ ‎развёртывания ‎на‏ ‎устройствах ‎MIoT‏ ‎с ‎ограниченными ‎ресурсами ‎(raspberry ‎Pi).

Недостатки

📌 Ограничения‏ ‎набора‏ ‎данных: хотя ‎MediHunt‏ ‎использует ‎пользовательский‏ ‎набор ‎данных ‎для ‎обучения ‎своих‏ ‎моделей‏ ‎машинного‏ ‎обучения, ‎создание‏ ‎и ‎обслуживание‏ ‎таких ‎наборов‏ ‎данных‏ ‎может ‎быть‏ ‎сложной ‎задачей. ‎Набор ‎данных ‎необходимо‏ ‎регулярно ‎обновлять,‏ ‎чтобы‏ ‎охватывать ‎новые ‎и‏ ‎зарождающиеся ‎сценарии‏ ‎атак.

📌 Ограничения ‎ресурсов: ‎хотя ‎MediHunt‏ ‎разработан‏ ‎с ‎учётом‏ ‎экономии ‎ресурсов,‏ ‎ограничения, ‎присущие ‎устройствам ‎MIoT, ‎такие‏ ‎как‏ ‎ограниченная ‎вычислительная‏ ‎мощность ‎и‏ ‎память, ‎все ‎ещё ‎могут ‎создавать‏ ‎проблемы.‏ ‎Обеспечить‏ ‎бесперебойную ‎работу‏ ‎фреймворка ‎на‏ ‎этих ‎устройствах‏ ‎без‏ ‎ущерба ‎для‏ ‎их ‎основных ‎функций ‎может ‎быть‏ ‎непросто.

📌 Сложность ‎реализации:‏ ‎Внедрение‏ ‎и ‎поддержка ‎платформы‏ ‎сетевой ‎криминалистики‏ ‎на ‎основе ‎машинного ‎обучения‏ ‎может‏ ‎быть ‎сложной‏ ‎задачей. ‎Это‏ ‎требует ‎опыта ‎в ‎области ‎кибербезопасности‏ ‎и‏ ‎машинного ‎обучения,‏ ‎который ‎может‏ ‎быть ‎доступен ‎не ‎во ‎всех‏ ‎медицинских‏ ‎учреждениях.

📌 Зависимость‏ ‎от ‎моделей‏ ‎машинного ‎обучения:‏ ‎Эффективность ‎MediHunt‏ ‎в‏ ‎значительной ‎степени‏ ‎зависит ‎от ‎точности ‎и ‎надёжности‏ ‎его ‎моделей‏ ‎машинного‏ ‎обучения. ‎Эти ‎модели‏ ‎необходимо ‎обучать‏ ‎на ‎высококачественных ‎данных ‎и‏ ‎регулярно‏ ‎обновлять, ‎чтобы‏ ‎они ‎оставались‏ ‎эффективными ‎против ‎новых ‎типов ‎атак.

📌 Проблемы‏ ‎с‏ ‎масштабируемостью: ‎хотя‏ ‎платформа ‎подходит‏ ‎для ‎небольших ‎развёртываний ‎на ‎устройствах‏ ‎типа‏ ‎Raspberry‏ ‎Pi, ‎ее‏ ‎масштабирование ‎до‏ ‎более ‎крупных‏ ‎и‏ ‎сложных ‎сред‏ ‎MIoT ‎может ‎вызвать ‎дополнительные ‎проблемы.‏ ‎Обеспечение ‎стабильной‏ ‎производительности‏ ‎и ‎надёжности ‎в‏ ‎более ‎крупной‏ ‎сети ‎устройств ‎может ‎быть‏ ‎затруднено


Подробный‏ ‎разбор



Предыдущий Следующий
Все посты проекта

Подарить подписку

Будет создан код, который позволит адресату получить бесплатный для него доступ на определённый уровень подписки.

Оплата за этого пользователя будет списываться с вашей карты вплоть до отмены подписки. Код может быть показан на экране или отправлен по почте вместе с инструкцией.

Будет создан код, который позволит адресату получить сумму на баланс.

Разово будет списана указанная сумма и зачислена на баланс пользователя, воспользовавшегося данным промокодом.

Добавить карту
0/2048